VHE (> 100 GeV) emission from FSRQs Its origin and emission mechanism

Bagmeet Behera

(DESY, Zeuthen Germany) and

Anna Barnacka

(NCAC, Warsaw Poland; and CEA, Saclay France)

Granada, 12 June 2013

- o Introduction: What we knew before about FSRQs.
- Whats recent observations with Fermi-LAT, Cherenkov instruments, along with other MWL data tell us -
 - Fermi LAT findings
 - VHE detection of 3 FSRQs
 - A closer look at PKS 1510-089
 - What does radio sample studies reveal
- Where we go from here?

Flat Spectrum Radio Quasar

If you asked a biased gamma-ray astronomer

o Observational definition \rightarrow FSRQs are blazars that have

Flat Spectrum Radio Quasar

If you asked a biased gamma-ray astronomer

 ${\rm o}$ Observational definition ${\rightarrow}$ FSRQs are blazars that have

Why are FSRQs hard to detect in VHE?

- Line emission and thermal components → Intense internal photon field in the IR-optical regime → In-situ absorption via e⁺ e⁻ pair production (*Internal absorption*)
- Low synchrotron peak → not enough high energy electron to up-scatter photons to VHE (means similarly *low frequency peak in the gamma-rays*)
- Steep Fermi-LAT spectrum means simple extrapolations → VHE gamma-ray ray emission too low to register
- FSRQs are relatively distant than BI Lacs $\rightarrow EBL$ absorption is also limiting the detection possibility

Why are FSRQs hard to detect in VHE?

- Line emission and thermal components → Intense internal photon field in the IR-optical regime → In-situ absorption via e⁺ e⁻ pair production (*Internal absorption*)
- Low synchrotron peak → not enough high energy electron to up-scatter photons to VHE (means similarly *low frequency peak in the gamma-rays*)
- Steep Fermi-LAT spectrum means simple extrapolations → VHE gamma-ray ray emission too low to register
- FSRQs are relatively distant than BI Lacs $\rightarrow EBL$ absorption is also limiting the detection possibility

Nevertheless, 3 FSRQs have been detected at VHE (although not every time these were observed) Bagmeet Behera | The origin and emission mechanism of VHE (> 100 GeV) emission from FSRQs | 12 June 2013 | Page 6

FSRQs detected in gamma-rays

o 353 FSRQs in the 2FGL Fermi-LAT catalog

FSRQs detected in gamma-rays

353 FSRQs in the 2FGL *Fermi*-LAT catalog Just 3 in very high energies (VHE: *i.e. E > 100 GeV*)

Number of FSRQs detected in gamma-rays

- o 353 FSRQs in the 2FGL Fermi-LAT catalog
- 3 in very high energies (VHE: *i.e.* E > 100 GeV)
 3C 279 in 2006, seen with MAGIC

Kinematics of AGN Jets - Ros, Eduardo J.Phys.Conf.Ser. 131 (2008)

Number of FSRQs detected in gamma-rays

- 353 FSRQs in the 2FGL Fermi-LAT catalog
- 3 in very high energies (VHE: *i.e.* E > 100 GeV)
 - ♦ 3C 279 in 2006 by MAGIC
 - **PKS 1510-089** in 2009 by H.E.S.S.

Bagmeet Behera | The origin and emission mechanism of VHE (> 100 GeV) emission from FSRQs | 12 June 2013 | Page 10

Number of FSRQs detected in gamma-rays

- 353 FSRQs in the 2FGL Fermi-LAT catalog
- 3 in very high energies (VHE: *i.e.* E > 100 GeV)
 - ♦ 3C 279 in 2006 by MAGIC
 - **PKS 1510-089** in 2009 by H.E.S.S.

From MWL observations

(a lot of interesting discussion in other talks)

Taking into account the VHE emission

Highly variability as some other bright FSRQs

 D'Ammando, F., et al. 2009, A&A, 508, 181
 PKS 1510-089 - Agile

 Abdo, et al. 2010 ApJ 721, 1425-1447
 PKS 1510-089 - Fermi-LAT

 Marscher, at al. 2010 ApJ 710, L 126
 PKS 1510-089 - Fermi-LAT

 Hayasida, et al. 2010 Nature 463, 919
 3C 279 Fermi-LAT

 and a number of other sources as well e.g. 3C 454.3 etc.

 $\diamond \rightarrow$ size scale of emitting region

Highly variability as some other bright FSRQs

 D'Ammando, F., et al. 2009, A&A, 508, 181
 PKS 1510-089 - Agile

 Abdo, et al. 2010 ApJ 721, 1425-1447
 PKS 1510-089 - Fermi-LAT

 Marscher, at al. 2010 ApJ 710, L 126
 PKS 1510-089 - Fermi-LAT

 Hayasida, et al. 2010 Nature 463, 919
 3C 279 Fermi-LAT

- and a number of other sources as well e.g. 3C 454.3 etc.
- $\diamond \rightarrow$ size scale of emitting region
- ♦ → size/variability scale of the external photon field (accounting for Doppler boosting)

• Higher 'z' compare to BL Lacs

 Possible curvature (and breaks) in some → indicate internal absorption due to emission lines, at least in some cases

Radio VLBI

• Meyer et al. 2011 and 2012

- More powerful jets in FSRQs
- Fermi-LAT FSRQs have
 EC dominated emission

Compton dominance (Rp) vs. radio core dominance (Rce).

MWL variability

o PKS 1510-089 flares

- ♦ Complex nature → multiple emission components, and multiple active zones
- Correlated gamma flux optical flux & polarization changes → co-spatial component for MWL flare
- Uncorrelated gamma / optical flares other mechanism

SED model for PKS 1510-089

Abdo et al. 2009 KN suppressed BLR and DT EC

SED model for PKS 1510-089

o Nalewajko et al. 2012

$o \rightarrow$ requirement of multiple 'component'

What we learn for VHE emission from FSRQs

VHE emission: Internal absorption constrains

 Internal absorption due to thermal fields does not absorb (all) emission above 100 GeV

♦ However, all 3 are detected below ~ 400 GeV

→ Strong indication of internal absorption due to IR photons from the dusty-torus which causes cutoff

Restricts the location of VHE emission to near (enough) the DT to be absorbed

Nature of IC emission: Thomson or Klien Nishina

- Orrelated variability in optical & Fermi-LAT → BLR EC should dominate 100 MeV to ~ GeV range
- Optical emission of BLR and low synchrotron peak \rightarrow Klein Nishina suppression for BLR EC
- However, DT can still up-scatter from highest energy electrons to VHE gamma-rays in Thomson regime

Variability

VHE flux consistent with constant

- → *Fermi*-LAT and H.E.S.S. could be seeing different emission-components
- Sometimes optical and *Fermi*-LAT fluxes correlate, at other times not

DES

SED model for PKS 1510-089 (including VHE)

Consequences:

- If VHE emission is from EC on the DT field, it should be variable over long time scales, and could be present in many objects
- Location outside BLR but still within the influence of DT \rightarrow VHE detection possible only in a narrow range
- Correlated variability could be seen in X-rays and VHE

Consequences:

- If VHE emission is from EC on the DT field, it should be variable over long time scales and could be present in many objects
- ${\rm o}$ Location between BLR but still within the influence of DT ${\rightarrow}$ VHE detection possible only in a narrow range
- Correlated variability could be seen in X-rays and VHE
- 4C 21.35 also showed very small variability time scale ~30m (*during a GeV flare*)
 - VHE emitting blazar-zone or the change in external photon field (even after accounting for ~100) should be small <~ light days</p>
 - □ Since the variability scales of the torus are expected ≥ month scale → BLR should provide the target photons with variability possibly driven by changing emission from the inner disk

Summary / Where do we go from here -

- It is difficult to detect FSRQs in VHE with current instruments
- Few new detections raise some interesting new questions
- Theoretical models should take in these complications into account
- Fermi-LAT flaring FSRQs do not guarantee bright VHE states
- MWL monitoring and correlating with low frequency observations in radio, IR, optical as well as higher energies, X-rays, could help understand the complicated behavior of gamma-ray bright FSRQs in general

