AGN jet physics and apparent opening angles

by E. Clausen-Brown, *and* T. Savolainen, A. B. Pushkarev, Y.Y. Kovalev, & J.A. Zensus

by E. Clausen-Brown, *and* T. Savolainen, A. B. Pushkarev, Y.Y. Kovalev, & J.A. Zensus

Causal connection in relativistic jets: results from the MOJAVE VLBI survey

by E. Clausen-Brown, *and* T. Savolainen, A. B. Pushkarev, Y.Y. Kovalev, & J.A. Zensus

A causally connected region is...

...a volume of space that a disturbance can propagate across

Why is causality important?

cosmology \leftrightarrow causal connectionasrelativistic jets \leftrightarrow causal connection

Jet stability

Lobanov & Zensus (MPIfR, 2001)

Jet stability (simulations)

Valencia jet simulation group & MPIfR

cosmology \leftrightarrow causal connectionasrelativistic jets \leftrightarrow causal connection

Jet stability

Lobanov & Zensus (MPIfR, 2009)

Jet production/acceleration

McKinney & Blandford (2009)

How to empirically constrain causality?

infer $\Gamma \theta_{jet}$

causality dictates $\Gamma \theta_{jet} < \Gamma_{s} \beta_{s}$

Derive P.D.F. for apparent opening angles, and fit it to MOJAVE data

 $\Gamma \theta_{jet}$ is free parameter found by the best fit.

Derive P.D.F. for apparent opening angles, and fit it to MOJAVE data

 $\Gamma \theta_{jet}$ is free parameter found by the best fit.

Theoretical $P(\theta_{app})$

I) First we find viewing angle probability of jet

 $P(\theta) = \sin \theta$ for unbiased random sample

But: flux-limited samples are highly biased towards blazars

$$\mathbf{P}(\theta) = (\mathbf{Doppler \ beaming \ bias}) \times \sin \theta$$

Cohen (1989), Vermeulen & Cohen (1994)

2) viewing angle prob. density

app. opening angle density

$$P(\theta_{\rm app}) = P(\theta(\theta_{\rm app})) \left| \frac{d\theta}{d\theta_{\rm app}} \right|$$

simplifying assumption: $\Gamma \theta_{jet} = \text{constant}$ in MOJAVE sample

Next assumption: velocity shear + Doppler beaming affect jet appearance

Either the signal speed is slow, or AGN jets are causally connected

What is $\Gamma \theta_{jet}$ for other types of relativistic outflows?

 $\Gamma \theta_j$ is probably intimately connected to jet physics

AGN jets have $\Gamma \theta_{jet} \approx 0.2$

Clausen-Brown et al. (2013, in prep) Pushkarev et al. (2009) Jorstad et al. (2005)

GRB jets have $\Gamma \theta_i \sim \text{tens}$

$$\rightarrow \frac{\left(\Gamma\theta_{j}\right)_{\text{GRB}}}{\left(\Gamma\theta_{j}\right)_{\text{AGN}}} \sim 100$$

Different physics for AGN & GRBs? GRB jet break-out?

Tchekhovskoy et al. (2010) Komissarov et al. (2010)

Jet parameters!

$$\delta = \frac{\beta_{app} \tan \theta_{app}}{\beta(\Gamma \theta_{jet})}$$

$$\Gamma \approx \frac{\beta_{app} (\mathbf{I} + (\Gamma \theta_{jet})^2 \cot^2 \theta_{app})}{\mathbf{2} (\Gamma \theta_{jet}) \cot \theta_{app}}$$

$$\theta_{ob} = \frac{2(\Gamma \theta_{jet})^2 \cot^2 \theta_{app}}{\beta_{app} (\mathbf{I} + (\Gamma \theta_{jet})^2 \cot^2 \theta_{app})}$$

Conclusion

- Jets are likely causally connected, as predicted by magnetic launching scenarios
- GRB jets have value of $\Gamma \theta_j$ 100 times greater than AGN jets, suggesting different physics at work

extra slides:

 MOJAVE (Monitoring Of Jets in Active galactic nuclei with VLBA Experiments) is a long-term program to monitor radio brightness and polarization variations in jets associated with active galaxies visible in the northern sky