Polarimetric Observations of

The Innermost Regions of Relativistic Jets

in X-ray Binaries

Dave Russell

Instituto de Astrofísica de Canari

In collaboration with Tariq Shahbaz, Rob Fender

The Innermost Regions of Relativistic Jets and Their Magnetic Fields

Granada, 10th June 2013

X-ray Binary Jets

• The jet power and magnetic field strength are uncertain and highly dependent on the position of the spectral break(s)

• How does the jet spectrum evolve during outbursts? → Time evolution (impossible for AGN)

Jet emission in the optical/NIR

Polarisation of optically thin synchrotron emission

- In NIR, the observed emission of X-ray binaries can be highly polarised
- Depends on magnetic field configuration
- Ordered field \rightarrow up to ~80% polarised
- Tangled field \rightarrow ~ no net polarisation

Intrinsic infrared polarisation: the results so far

Gamma-ray polarisation detected in Cyg X-1

Polarised γ*-ray emission from Cygnus X-1 might be from the jet (Laurent et al. 2011, Science)*

Polarisation strength is very high: 67 +- 30 % !! (0.4-2 MeV) Derived from 58 days of exposure time with INTEGRAL

This would imply a very highly ordered, constant B field at the base of the jet of Cyg X-1

→ Jourdain et al. 2012 confirmed the result using a different instrument on INTEGRAL

 \rightarrow 76 +- 15 % at 230-850 keV

ightarrow <20% at 130-230 keV

 \rightarrow (Jet) synchrotron is the only plausible origin

Broadband polarisation measurements of Cyg X-1

Our team observed Cyg X-1 in near-IR with William Herschel Telescope + LIRIS in June 2010 in polarimetry mode

No previous near-IR polarisation measurements published

Its bright: achieved polarisation accuracy of 0.07 %

Multi-wavelength linear polarization values of Cyg X–1.

Waveband	$\log(nu; \text{Hz})$	FLP (%) Observed	PA (°) Observed	Reference
$5~\mathrm{GHz}$	9.70	< 10	_	Stirling et al. (2001)
2.2 μ m (K _S -band)	14.14	1.32 ± 0.07	147.5 ± 1.6	This paper
1.7 μm (<i>H</i> -band)	14.26	0.97 ± 0.06	132.9 ± 1.7	This paper
$1.2 \ \mu m \ (J-band)$	14.38	1.96 ± 0.07	134.3 ± 1.7	This paper
$0.64 \ \mu m \ (R-band)$	14.67	4.40 ± 0.08	140.8 ± 0.5	Dolan (1992)
$0.55 \ \mu m \ (V-band)$	14.74	4.77 ± 0.23	141.4 ± 1.4	Dolan (1992) X-rav
$0.44 \ \mu m \ (B-band)$	14.83	4.70 ± 0.30	141.8 ± 1.8	Dolan (1992)
$0.37 \ \mu m \ (U-band)$	14.91	4.35 ± 0.16	139.7 ± 1.0	Nolt et al. (1975)
$0.40 - 0.90 \ \mu m^a$	14.52 - 14.87	3.3 - 4.8	135.9 - 137.1	Nagae et al. (2009)
2.6 keV	17.80	2.44 ± 1.07	162 ± 13	Long et al. (1980)
5.2 keV	18.10	5.3 ± 2.5	155 ± 14	Long et al. (1980)
130-230 keV	19.50 - 19.75	< 20	_	Jourdain et al. (2012)
$230{-}370 \text{ keV}$	19.75 - 19.95	41 ± 9	47 ± 4	Jourdain et al. (2012)
230-850 keV	19.75 - 20.31	76 ± 15	42 ± 3	Jourdain et al. (2012)
$400{-}2000~{\rm keV}$	19.99 - 20.68	67 ± 30	40 ± 10	Laurent et al. $(2011)^b$

A simple model can reproduce the broadband fractional linear polarization (FLP) given the input SED (Russell & Shahbaz, in prep.)

 $\alpha_{\rm thin} = 0.5(1-p).$

• Self-absorbed synchrotron (radio to IR):

Components:

 $FLP_{\text{thick}} = f \frac{3}{6p+13}$ (e.g. Blandford et al. 2002) Max FLP = 11%

 Optically thin synchrotron (IR to X-ray) with cut-off in X-ray

$$FLP_{\text{thin}} = f \frac{p+1}{p+7/3} = f \frac{1-\alpha_{\text{thin}}}{5/3-\alpha_{\text{thin}}}$$

(Bjornsson & Blumenthal 1982)

Max FLP = 82%

• Comptonized corona, assumed here to be unpolarized (chaotic corona geometry, no net aligned field?)

Conclusions

- NIR synchrotron emission from jets in X-ray binaries is polarized
- The results so far suggest:
- Near the jet base the magnetic field is probably:
 - → generally turbulent (only partially ordered) and rapidly changing
 - \rightarrow parallel to the jet axis
 - \rightarrow except in Cyg X-1, where it is highly ordered & perpendicular to jet axis
- More data and more models are needed to explain the observations

 Future spaceborne X-ray polarimeters should be able to detect variable X-ray polarization from synchrotron emission from XRB jets

Thanks for listening

VLT observations of GX 339-4 in 2008

→ We observed GX 339-4 in September 2008 during a hard state with VLT+ISAAC
→ We detect significant, variable linear polarisation in the near-infrared (when the jet dominated)

We infer a predominantly tangled, variable magnetic field near the jet base

- \rightarrow The PA of polarisation is ~ perpendicular to the PA of the resolved radio jet
- \rightarrow The magnetic field is approximately parallel to the jet axis

Russell et al. 2011

