Probing the inner jet of M87 from the jet base to HST-1

"The innermost regions of relativistic jets and their magnetic fields" June 10-14 2013, Granada, Spain

Collaborators

- A.Doi(JAXA), M.Kino(JAXA), H.Nagai(NAOJ),
 M.Honma(NAOJ), Y.Hagiwara(NAOJ),
 N.Kawaguchi(NAOJ), K.Niinuma(Yamaguchi U.),
 T.Haga(JAXA), F.Takahara(Osaka U.)
- G.Giovannini(IRA), M.Giroletti(IRA), M.Orienti(IRA), C.Casadio(IAA), J.L.Gomez(IAA), C.C.Cheung(NRL) M.Beilicke(Washington U.), A.Cesarini(NUI), H.Krawczynski(Washington U.), N.P.Lee(SAO) and many others

Outline

Overview our several ongoing projects for M87 inner jet

- Motivation why M87?
- Multi-frequency VLBI approach core location, jet collimation
- 2. Multi-epoch VLBI approach TeV sites, jet kinematics
 - HST-1 monitor with EVN
 - Core/jet base monitor with VERA
- 3. Further related studies for M87 and other sources
 - M87 with ALMA
 - Poynting dominated vs kinetic dominated at M87 jet base
 - Core shift astrometry for two-sided jet sources
 - Summary

M87 (Virgo A)

10kpc

- D = 16.7 Mpc
- $M_{BH} = 6 \times 10^9 M_{sun}$

(X under debate e.g., Walsh et al.2013)

Credit: X-ray: NASA/CXC/KIPAC/N. Werner et al Radio: NSF/NRAO/AUI/W. Cotton

Why M87?

- 1mas = 0.08pc = 140Rs, 1c = 4mas/yr
- VLBI can resolve/image <100Rs scale
- Accurate kinematic measurements
- Bright, well-studied jet from radio to X-ray

PSF

TeV flares, GeV/MeV steady detections

Chandra

Chandra X-ray Observa Radio: F.Zhou, F.Owen (NRAO), J.Biretta (STScI) Optical: NASA/STScI/UMBC/ E.Perlman et al. X-ray: NASA/CXC/MIT/ H.Marshall et al.

• 6 r_s

TeV/HESS

Aharonian+2006

— 0.01 pc

Junor+ 1999

- Better observational constraints on
 - Jet launch/collimation
 - Kinematics
 - Origin/Location of γ-ray

1. Multi-frequency VLBI approach

- Core location (Hada+2011) - Jet collimation profile (current progress)

Location of the M87 core

- Radio core: a surface of synchrotron-self-absorption ($\tau_{ssa} \sim 1$) or a standing shock feature
- Large BH-core offsets (10⁴⁻⁶Rs) for some blazars (eg, BLLac; Marscher et al. 2008)

Approaching the BH: Core shift measurements with multi-v astrometry

- $\tau_{ssa} \sim 1$ surface approaches BH at higher frequencies
- Astrometry achieves tens of µas position accuracy
 - ~10Rs scale for M87

Core shift converges ~14-23Rs upstream of the 43GHz core (deprojected distance for jet inclination / = 15°-25°)

Consistent with the counter jet detections/motions

Core-BH separation: large difference between M87 and some other sources

 Useful to investigate other nearby sources (end of talk)

- VLBA @ 2,5,8,15,22,43GHz
- Stable reference M84

The structure of M87 jet

Asada&Nakamura 2012

Parabolic profile between ~100 and ~10⁵Rs from BH

The structure of M87 jet

Asada&Nakamura 2012

We can fill the gap by adding the core shift astrometry!

Innermost structure of M87 jet (Hada et al.)

Note2: BH location assumed at the core-shift convergence point in H11

Innermost structure of M87 jet (Hada et al.)

Note2: BH location assumed at the core-shift convergence point in H11

2. Multi-epoch VLBI approach

HST-1 monitor with EVN
 Core/jet base monitor with VERA

Why M87 VLBI monitor ?

VLBA 1.7GHz (Cheung+07)

Stationary feature "d" TeV/Shocked site?

- Unusual feature ~80pc/10⁴Rs downstream of the jet base (projected)
- Stationary feature "d" (upstream edge; Cheung+2007)
- Super-luminal (~4c) ejection near the TeV flare
 - Hallmark of a blazar core (Cheung+07, Harris+08)
 - HST1 upstream marks a recollimation shocked region (Stawarz+06)
- Sub-luminal (~0.6c) + optically thin ($\alpha_{1.7-15}$ ~ -0.8)
 - Not find evidence of a blazar nature (Chang+10)

HST-1/M87 monitor project	VLBA 1.7GHz	EVN 5.0GHz
with EV/N	2005/01/13	2009/08/22
	2005/05/06	2009/11/19
(Giovannini+ 2010; Giroletti, KH+ 2012)	2005/05/22	2010/01/27
EVN	2005/10/27	2010/02/10
Ar Cmo who	2005/12/16	2010/03/02
	2006/02/03	2010/03/30
	2006/05/11	2010/05/18
0 1 2 3 4	2006/06/30	2010/06/14
40 -	2006/07/12	2010/11/23
Ë 30 -	2006/11/11	2011/03/09
	2007/01/30	2011/04/12
	2007/05/28	2011/06/02
	2007/08/20	2011/08/25
20 0 -20 -40 -60 -80	2007/12/14	2011/10/17
5GHz from mid 2009	2008/02/02	2012/01/11
Good resolution (1~10mas) sensitivity (0.1~0.3m ly/bm)	2008/05/27	2012/03/20
A few (weeks~months) intervals	2008/08/12	2012/06/19
	2008/11/29	2012/10/09
Followed a large rev hare in Apr/2010	2009/02/21	2013/01/15
More than 20 epochs obtained up to now	2009/05/21	2013/05/03
 Extend back to the past by adding 1.7GHz VLBA data 	2009/06/13	And more

Current status

M87 core/jet base monitor with VERA (2010/Oct~)

Strategies & advantages

- Very dense, continuous monitor (every ~1-3weeks, roughly full-year)
- Mainly 22GHz but also 43GHz
- Core spectrum, spectral index and their time evolutions
- Astrometry, core-shift

Aims

- Dense lightcurves for the core
- Kinematics near BH
- Radio/γ-ray correlation at jet
 base
- Nuclear opacity, B-strength
- Complementary study with the EVN monitor

Resolutions ~1.2mas (22GHz)
 ~0.6mas (43GHz)
 Dual-beam astrometry capability

See also **GENJI** programme; Nagai+2013

Some preliminary results

- VERA demonstrating a very nice ability for tracking M87 jet base evolutions
- More than 20 epochs within 1year (22GHz)
- Detection of ~50% radio flare (& decay) (22/43GHz)
- Sub-luminal (0.4~0.6c) apparent speeds at r ~10²⁻³Rs
 - c.f. months-scale monitor@15GHz shows <0.05c; Kovalev et al.2007
- Astrometry/coreshift analysis in progress

3. Further related studies for M87 and other sources

M87 with ALMA (see poster Doi+)
 U_B vs U_e at M87 jet base (see poster Kino+)
 Core-shift for two sided jets (see Haga's talk for NGC4261)

M87 with ALMA

Credit:ESO

Another important approach to probe the innermost region of M87 is to examine the spectral properties at mm/submm

- We can extract emission from BH vicinity (Doeleman+12). Spectral shape tells us physical properties for this region.
- ALMA is the best instrument for spectral studies at mm/submm

The first ALMA image of M87 (Doi, KH+ in prep)

arcsec

Declination

- 36 frequencies (quasisimultaneous)
 - 90--700 GHz

- 0.2--2.3 arcsec beam
- 0.1--6.6 mJy/beam rms
- Core, knot A,B,C,D
 - HST-1 not detected

Clean I map. Array: ALMA 3C274 at 107.979 GHz 2012 20 knot C knot B knot A core \bigcirc knot D Relative .20 ^o ALMA band-3 (108 GHz) 20 -20Right Ascension (arcsec) Map center: RA: 12 30 49.423, Dec: +12 23 28.043 (2000.0) Map peak: 1.7 Jy/beam Contours: 0.00751 Jy/beam x (-1 1 2 4 8 16 32 64) Beam FWHM: 2.28 x 1.15 (arcsec) at 43.2°

Cm-submm spectrum

(Doi, KH+ in prep, see poster)

Discovery of a spectral break for the core at ~200GHz

Poynting or kinetic power dominated in M87? (see poster by Kino, Takahara, KH+)

See Poster Kino, Takahara, KH +

Core shift astrometry for two-sided jet sources

NGC4261 VLBA (talk by Haga)

Also observing 3C84, CenA, CygA, 3C338 and Mrk348

Summary

Overviewed our ongoing projects for the inner jet of M87

- M87 is a unique target to probe jet collimation, velocity field, origin/locations of TeV γ-ray
- Multi-frequency astrometry approach
 - Core location: close to BH (~20Rs@43GHz)
 - Innermost collimation profile: possible transition from a parabolic to a more radially-oriented shape (r~10-100Rs)?
- Deep monitor with EVN(weeks~months) / VERA(~1-3weeks)
 - Jet speeds
 - Sub-luminal (0.4~0.6c) jet base
 - Super-luminal (~4c) HST-1 downstream
 - Peculiar nature of the HST-1 upstream edge: recollimation shocked region related to TeV events?
- Mm/submm spectra with ALMA
 - Discovery of a spectral break for the core at ~200GHz
- $U_{\rm B}$ vs $U_{\rm e}$ at M87 jet base
- Core shift astrometry for two-sided jet sources

Supplementary slides

Core/jet base

Jet launch size (Doeleman et al. 2012)

- 1.3mm (230GHz) VLBI
- Jet launch size
 - -40μ as = 5Rs

HST-1 motions (Giroletti, KH et al. 2012)

