

Macroscopic & Microscopic Instabilities in Relativistic Jets

Philip Hardee (U. Alabama, Tuscaloosa)

The Innermost Regions of Jets & Their Magnetic Fields Granada, Spain, June 2013

Introduction

- Macroscopic Instabilities
 - KHI (velocity shear driven)
 - CDI (current driven)
- Macroscopic Observables
 - Pinch/Twisted structures
 - Flow & Pattern speeds
 - B-field structure via polarization
- Microscopic Instabilities
 - Filamentation (2-stream)
 - KKHI (velocity shear)
 - Reconnection
- Microscopic Observables
 - Spectrum (Synchrotron/Jitter/IC)
 - Energy distribution
- M87 Implications

McKinney & Blandford (2009)

Kinked jet basically stable structure

KHI Spine Sheath Mixing

(Walg et al. 2013)

G

R (kpc)

Η

R (kpc)

Spine

Sheath

6

R (kpc)

8

The KH Normal Modes

Shear Layer Stabilization

Short λ Saturation/Stabilization

(Pinch Mode - Perucho et al. 2004 ; Helical Mode – Xu et al. 2000)

Wave Advection along expanding jet

 $\lambda > \lambda^* \sim \gamma MR \longrightarrow \lambda < \lambda^* \sim \gamma MR$

Magnetic Fields & KHI

Poloidal B

(Rosen et al. 1999)

Magnetic tension suppresses KHI higher order modes

Magnetic field suppresses KHI induced vortices (Baty & Keppens 2002)

Helical Field Helps Maintain Spine Sheath Configuration

Sub-Alfvénic KH Stabilization

Hardee & Rosen (1999, 2002)

Poloidal: $B_{\mathbb{K}}/B_p \sim 0$

Mizuno et al. (2007)

Super-Alfvénic velocity shear

 y/R_j

10

20

30

 z/R_i

40

50

KH Stable when sub-Alfvénic

Current Driven Instability

CDI Kink Destabilzation/

Helicity decreasing & Density increasing with radius -> Slower growth [Agrees with non-relativistic results of Appl et al. (2000); Lery et al. (2000)]

CDI kink: Spatial Growth (Constant pitch, density decrease: $v_i = 0.2 c$, $v_A \le 0.36 c$)

 R_i = velocity shear radius $a \sim$ radius B_{ϕ} maximum

 $R_i = a/2$ (flow through kink)

 $R_i = 4a$ (kink moves with flow)

Partial stabilization by kink advection with flow (Mizuno et al. in progress)

Filamentation Instability - Shocks

Filamentation Instability & Shock Structure

Emission & Reconnection

fast MHD Shock

3000

p = -1.4

 10^{4}

 10^{2}

small-pitch-angle

jitter

 10^{3}

10

3

Kinetic Kelvin Helmholtz Instability

M87: Collimation, Propagation & CDI/KHI

Launching Region (few 100s R_s); Collimation (CDI/KHI) Region; Propagation (KHI) Region

M87: Launching Region & Microphysics

Global Jet Processes too slow for <1 day Tev variability ⇒ small scale structures for CDI, KKHI, Filamentation, Reconnection & rapid particle acceleration

M87: Summary & Conclusion

Jet angle: $\theta \sim 15^{\circ}$, Global Spine-Sheath: $\gamma_{spine} \sim 7$, $\gamma_{sheath} \sim 3$, Doppler: $\delta <<< \delta_{max} = 2 \gamma_{spine}$

