
The force-free magnetosphere 
of a rotating black hole

Ioannis Contopoulos, Academy of Athens



Macdonald & Thorne 1982

• ...Goldreich & Julian laid the foundations for the 
theory of ‘pulsar electrodynamics’ in 1969...

• ...A compelling mechanism by which black holes can 
energize quasars was not found until 13 years after 
the quasar discovery... The long delay is surprising, 
since the mechanism is essentially the same as in the 
pulsar case: magnetic fields, embedded in a rotating 
black hole and a surrounding accretion disk, 
transmit rotational and orbital energy to distant 
radiating particles...

• Many astrophysicists feel uncomfortable in curved 
spacetime...



• Macdonald & Thorne reformulated electrodynamics 
with the hope that it may catalyze pulsar-
experienced astrophysicists to begin research on 
black-hole electrodynamics and to bring to bear on 
this topic their lore about the ‘axisymmetric pulsar 
problem’...

Macdonald & Thorne 1982
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• Radio loud/radio quiet AGN

• Jet formation and disruption in X-ray binaries

• No relation between BH spin and jet power?!!

Blandford-Znajek revisited
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the exact structure of the black hole magnetosphere. Also, at that time, the fundamental
significance of the distributions of the magnetospheric electric current and field line angular
velocity had not been appreciated. Today, we revisit this problem with all the knowledge we
carry from our 13-year long investigation of the force-free pulsar magnetosphere.

2. The general relativistic pulsar equation

In order to derive the fundamental equation that governs the steady-state structure of
the force-free magnetosphere around a Kerr black hole we follow closely the 3+1 formulation
of Thorne & Macdonald (1982) used by most researchers in the astrophysical community
(e.g. Uzdensky 2005). We restrict our analysis to steady-state and axisymmetric space times
where (. . .),t = (. . .),φ = 0. In that case, the general 4-dimensional space-time geometry may
be written in Boyer-Lindquist spherical coordinates xµ ≡ (t, r, θ,φ) as

ds2 = gµνdx
µdxν

= −α2dt2 +
A sin2 θ

Σ
(dφ− Ωdt)2 +

Σ

∆
dr2 + Σdθ2 . (1)

Here, α ≡ (∆Σ/A)1/2 and Ω ≡ 2aMr/A are the lapse function and angular velocity of
‘zero-angular momentum’ fiducial observers (ZAMOs) respectively,

∆ ≡ r2 − 2Mr + a2 , Σ ≡ r2 + a2 cos2 θ , A ≡ (r2 + a2)2 − a2∆ sin2 θ , (2)

M is the black hole mass, and a its angular momentum (0 ≤ a ≤ M). Throughout this
paper we adopt geometric units where G = c = 1. Semicolon stands for covariant derivative,
comma for partial derivative. Latin indices denote spatial components (1−3), Greek indices
denote space-time components (0− 3), and ‘∼’ denotes the spatial part of vectors. ZAMOs
move with 4-velocity Uµ = (1/α , 0 , 0 ,Ω/α) orthogonal to hypersurfaces of constant t. The
force-free magnetosphere of a spinning black hole is characterized by the electromagnetic
energy-momentum tensor

T µν =
1

4π
(F µ

αF
να − 1

4
FαβF

αβgµν) , (3)

and the condition T µν
;ν = 0. Here, the rest mass and pressure contribution have been

neglected. The electromagnetic field tensor F µν is related to the electric and magnetic
fields Eµ, Bµ measured by ZAMOs through F µν = UµEν − UνEµ + εµνλρBλUρ (εµνλρ ≡
|det(gµν |−1/2[µνλρ] is the 4-dimensional Levi-Civita tensor). Under these conditions, the fun-
damental equation that governs the steady-state structure of the force-free magnetosphere
around a Kerr black hole becomes

ρeẼ + J̃ × B̃ = 0 . (4)
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ditions, the fundamental equation that governs the steady-state structure of the force-free
magnetosphere around a Kerr black hole becomes

ρeẼ + J̃ × B̃ = 0 . (4)

ρe and J̃ are the electric charge and current densities respectively. Eq. (4) is supplemented
by Maxwell’s equations of electrodynamics

∇̃ · B̃ = 0

∇̃ · Ẽ = 4πρe

∇̃ × (αB̃) = 4παJ̃

∇× (αẼ) = 0 . (5)

Here,
∇̃ · Ã ≡ Aj

;j , (∇̃ × Ã)i ≡ [ijk]|det(glm)|−1/2Ak;j , (6)

Ã · B̃ ≡ gijAiBj , (Ã× B̃)i ≡ [ijk]|det(glm)|−1/2AjBk . (7)

For several applications in astrophysics, perfect (infinite) conductivity is a valid approxima-
tion. In this case,

Ẽ · B̃ = 0 , (8)

and the electric and magnetic vector fields can be expressed in terms of three scalar functions,
Ψ(r, θ), ω(Ψ), and I(Ψ) as

B̃(r, θ) =
1√

A sin θ

�
Ψ,θ,−

√
∆Ψ,r,

2I
√
Σ

α

�
(9)

Ẽ(r, θ) =
ΩBH − ω

α
√
Σ

�√
∆Ψ,r,Ψ,θ, 0

�
. (10)

ΩBH ≡ a/(r2
BH

+ a2) is the angular velocity of the black hole, rBH ≡ M +
√
M2 − a2 is the

radius of the black hole horizon, ω is the angular velocity of the magnetic field lines, and I
is the poloidal electric current flowing through the circular loop r =const., θ =const. The
poloidal component of Eq. (4) then yields the general relativistic force-free Grad-Shafranov
equation
�
Ψ,rr +

1

∆
Ψ,θθ +Ψ,r

�
A,r

A
− Σ,r

Σ

�
− Ψ,θ

∆

cos θ

sin θ

�
·
�
1− ω2A sin2 θ

Σ
+

4Mαωr sin2 θ

Σ
− 2Mr

Σ

�

−
�
A,r

A
− Σ,r

Σ

�
Ψ,r −

�
2
cos θ

sin θ
− A,θ

A
+

Σ,θ

Σ

�
(ω2A sin2 θ − 4Mαωr sin2 θ + 2Mr)

Ψ,θ

∆Σ
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Ẽ(r, θ) =
ΩBH − ω

α
√
Σ

�√
∆Ψ,r,Ψ,θ, 0

�
. (10)

ΩBH ≡ a/(r2
BH

+ a2) is the angular velocity of the black hole, rBH ≡ M +
√
M2 − a2 is the

radius of the black hole horizon, ω is the angular velocity of the magnetic field lines, and I
is the poloidal electric current flowing through the circular loop r =const., θ =const. The
poloidal component of Eq. (4) then yields the general relativistic force-free Grad-Shafranov
equation
�
Ψ,rr +

1

∆
Ψ,θθ +Ψ,r

�
A,r

A
− Σ,r

Σ

�
− Ψ,θ

∆

cos θ

sin θ

�
·
�
1− ω2A sin2 θ

Σ
+

4Mαωr sin2 θ

Σ
− 2Mr

Σ

�

−
�
A,r

A
− Σ,r

Σ

�
Ψ,r −

�
2
cos θ

sin θ
− A,θ

A
+

Σ,θ

Σ

�
(ω2A sin2 θ − 4Mαωr sin2 θ + 2Mr)

Ψ,θ

∆Σ

– 4 –

Eµ, Bµ measured by ZAMOs through F µν = UµEν − U νEµ + �µνλρBλUρ. Under these con-
ditions, the fundamental equation that governs the steady-state structure of the force-free
magnetosphere around a Kerr black hole becomes
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ω is the angular velocity of the magnetic field lines, I is the poloidal electric current flowing
through the circular loop r =const., θ =const., and Ψ is equal to 2π times the total magnetic
flux enclosed in that loop. Notice that the electric field changes sign close to the horizon with
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Ã · B̃ ≡ gijAiBj , (Ã× B̃)i ≡ [ijk]|det(glm)|−1/2AjBk . (7)

For several applications in astrophysics, perfect (infinite) conductivity is a valid approxima-
tion. In this case,
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the exact structure of the black hole magnetosphere. Also, at that time, the fundamental
significance of the distributions of the magnetospheric electric current and field line angular
velocity had not been appreciated. Today, we revisit this problem with all the knowledge we
carry from our 13-year long investigation of the force-free pulsar magnetosphere.

2. The general relativistic pulsar equation

In order to derive the fundamental equation that governs the steady-state structure of
the force-free magnetosphere around a Kerr black hole we follow closely the 3+1 formulation
of Thorne & Macdonald (1982) used by most researchers in the astrophysical community
(e.g. Uzdensky 2005). We restrict our analysis to steady-state and axisymmetric space times
where (. . .),t = (. . .),φ = 0. In that case, the general 4-dimensional space-time geometry may
be written in Boyer-Lindquist spherical coordinates xµ ≡ (t, r, θ,φ) as

ds2 = gµνdx
µdxν

= −α2dt2 +
A sin2 θ

Σ
(dφ− Ωdt)2 +

Σ

∆
dr2 + Σdθ2 . (1)

Here, α ≡ (∆Σ/A)1/2 and Ω ≡ 2aMr/A are the lapse function and angular velocity of
‘zero-angular momentum’ fiducial observers (ZAMOs) respectively,

∆ ≡ r2 − 2Mr + a2 , Σ ≡ r2 + a2 cos2 θ , A ≡ (r2 + a2)2 − a2∆ sin2 θ , (2)

M is the black hole mass, and a its angular momentum (0 ≤ a ≤ M). Throughout this
paper we adopt geometric units where G = c = 1. Semicolon stands for covariant derivative,
comma for partial derivative. Latin indices denote spatial components (1−3), Greek indices
denote space-time components (0− 3), and ‘∼’ denotes the spatial part of vectors. ZAMOs
move with 4-velocity Uµ = (1/α , 0 , 0 ,Ω/α) orthogonal to hypersurfaces of constant t. The
force-free magnetosphere of a spinning black hole is characterized by the electromagnetic
energy-momentum tensor

T µν =
1

4π
(F µ

αF
να − 1

4
FαβF

αβgµν) , (3)

and the condition T µν
;ν = 0. Here, the rest mass and pressure contribution have been

neglected. The electromagnetic field tensor F µν is related to the electric and magnetic
fields Eµ, Bµ measured by ZAMOs through F µν = UµEν − UνEµ + εµνλρBλUρ (εµνλρ ≡
|det(gµν |−1/2[µνλρ] is the 4-dimensional Levi-Civita tensor). Under these conditions, the fun-
damental equation that governs the steady-state structure of the force-free magnetosphere
around a Kerr black hole becomes

ρeẼ + J̃ × B̃ = 0 . (4)
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ρe and J̃ are the electric charge and current densities respectively. Eq. (4) is supplemented
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ω is the angular velocity of the magnetic field lines, I is the poloidal electric current flowing
through the circular loop r =const., θ =const., and Ψ is equal to 2π times the total magnetic
flux enclosed in that loop. Notice that the electric field changes sign close to the horizon with
respect to its sign at large distances. As explained in BZ77, a rotating observer (ZAMO)
will in general see a Poynting flux of energy entering the horizon, but he will also see a
sufficiently strong flux of angular momentum leaving the horizon. That ensures that energy
is extracted from the black hole. The poloidal component of Eq. (4) then yields the general
relativistic force-free Grad-Shafranov equation
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(Eq. (3.14) of Blandford & Znajek 1977 re-written in our notation). Henceforth, primes will
denote differentiation with respect to Ψ. One sees directly that if we set α = 0 and M = 0
in eq. (11) we obtain

�
Ψ,rr +

1

r2
Ψ,θθ +

2Ψ,r

r
− 1

r2
cos θ

sin θ
Ψ,θ

�
· [1− ω2r2 sin2 θ]
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�
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Ψ2

,θ

�
= −4II � , (12)

which is the well known pulsar equation (Scharlemann & Wagoner 1973). The zeroing of the
expression multiplying the second order derivative term in eq. (11) yields the two singular
‘light surfaces’. When M = α = 0, it yields the standard pulsar light cylinder r sin θ = c/ω.
When M �= 0 and α �= 0, the shape of the outer ‘light surface’ is only asymptotically
cylindrical as θ → 0 (see figure 2 below), and an inner ‘light surface’ appears inside the
ergosphere. It is interesting to note that the outer boundary of the ergosphere corresponds
to the solution of the singularity condition for ω = 0, whereas the inner boundary (the
event horizon) corresponds to the solution of the singularity condition for ω = ΩBH. It is
also interesting to note that the natural ‘radiation condition’ at infinity (energy must flow
outwards along all field lines) requires that

0 ≤ ω ≤ ΩBH (13)

(Blandford & Znajek 1977), and therefore indeed the inner ‘light surface’ lies inside the
ergosphere.

Both Eqs. (11) and (12) contain the two functions, ω(Ψ) and I(Ψ), which must be
determined by the physics of the problem. In the case of an axisymmetric spinning neutron
star, ω is usually taken to be equal to the neutron star angular velocity ΩNS. Notice that in
the presence of particle acceleration magnetospheric ‘gaps’, this is not 100% exact (Ruderman
& Sutherland 1975, Contopoulos 2005). In particular, in old pulsars near their death line
ω � ΩNS. In pulsars, I(Ψ) is self-consistently determined through an iterative numerical
technique that implements a smooth crossing of the relativistic Alfvèn surface, the light
cylinder where r sin θ = c/ω (Contopoulos, Kazanas & Fendt 1999, Timokhin 2006). In the
case of a spinning black hole, the situation is qualitatively similar but more complicated.
Contrary to a neutron star, the black hole does not have a solid surface, and therefore it
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We update the distributions of ω(Ψ) and I(Ψ) as follows: At each latitude θ, we check

where the singularity condition

1− ω2A sin
2 θ

Σ
+

4Mαωr sin2 θ

Σ
− 2Mr

Σ
= 0 (17)

is satisfied in r. At each such radial position, we extrapolate Ψ from r+ (larger r) and

r− (smaller r). In general, Ψ(r+, θ) differs from Ψ(r−, θ). At the inner ‘light surface’ we

implement

ωnew(Ψnew) = ωold(Ψnew)− [Ψ(r+, θ)−Ψ(r−, θ)] , with (18)

Ψnew ≡ 0.5Ψ(r+, θ) + 0.5Ψ(r−, θ) , (19)

whereas at the outer ‘light surface’ we implement

ωnew(Ψnew) = ωold(Ψnew)− [Ψ(r+, θ)−Ψ(r−, θ)] , (20)

Inew(Ψnew) = Iold(Ψnew) + [Ψ(r+, θ)−Ψ(r−, θ)] , with (21)

Ψnew ≡ 0.5Ψ(r+, θ) + 0.5Ψ(r−, θ) . (22)

In order to facilitate convergence, at the inner ‘light surface’ we update only ω every 10

relaxation iterations for Ψ, whereas at the outer ‘light surface’ we update both ω and I every

50 relaxation iterations for Ψ. Also, in order to avoid numerical instabilities, we smooth out

the distributions of ω(Ψ) and I(Ψ) every 50 relaxation iterations for Ψ. We found that

more frequent smoothing inhibits the convergence of our iteration scheme. Notice that this

procedure was obtained empirically and is not a general rule for anyone who may want to

reproduce our results. It is also interesting that we update ω and I only through the non-

smoothness of the solution, and not through the regularization conditions at the two singular

‘light surfaces’ as we did in Contopoulos, Kazanas & Fendt (1999). In fact, this is a very

general procedure that may be applied to any similar singular equation. One must be careful

with the sign of the correction terms which can only be determined empirically by trial and

error.

The results of our numerical integration are shown in figure 1. We show here the final

distributions for ω(Ψ) (left panel) and |I(Ψ)| (right panel) for five values of the black hole spin
parameter a. The solution is very close (within 10%) to the split monopole configuration that

we implemented as initial condition for our iterative relaxation numerical method (Eqs. 15 &

16). As is the case in pulsars, the magnetospheric electric current is non-zero at Ψ = Ψmax,

and the global electric circuit closes through an equatorial current sheet. Notice that we

have no way to update ω along the axis, and therefore we have chosen ω(Ψ = 0) = 0.5ΩBH.

We have also implemented ω�(Ψ = Ψmax) = I �(Ψ = Ψmax) = 0. The reader should check

Contopoulos, Kazanas & Papadopoulos 2013
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(Eq. (3.14) of Blandford & Znajek 1977 re-written in our notation). Henceforth, primes will
denote differentiation with respect to Ψ. One sees directly that if we set α = 0 and M = 0
in eq. (11) we obtain

�
Ψ,rr +

1

r2
Ψ,θθ +

2Ψ,r

r
− 1

r2
cos θ

sin θ
Ψ,θ

�
· [1− ω2r2 sin2 θ]

−2Ψ,r

r
− 2ω2 cos θ sin θΨ,θ − ωω�r2 sin2 θ

�
Ψ2

,r +
1

r2
Ψ2

,θ

�
= −4II � , (12)

which is the well known pulsar equation (Scharlemann & Wagoner 1973). The zeroing of the
expression multiplying the second order derivative term in eq. (11) yields the two singular
‘light surfaces’. When M = α = 0, it yields the standard pulsar light cylinder r sin θ = c/ω.
When M �= 0 and α �= 0, the shape of the outer ‘light surface’ is only asymptotically
cylindrical as θ → 0 (see figure 2 below), and an inner ‘light surface’ appears inside the
ergosphere. It is interesting to note that the outer boundary of the ergosphere corresponds
to the solution of the singularity condition for ω = 0, whereas the inner boundary (the
event horizon) corresponds to the solution of the singularity condition for ω = ΩBH. It is
also interesting to note that the natural ‘radiation condition’ at infinity (energy must flow
outwards along all field lines) requires that

0 ≤ ω ≤ ΩBH (13)

(Blandford & Znajek 1977), and therefore indeed the inner ‘light surface’ lies inside the
ergosphere.

Both Eqs. (11) and (12) contain the two functions, ω(Ψ) and I(Ψ), which must be
determined by the physics of the problem. In the case of an axisymmetric spinning neutron
star, ω is usually taken to be equal to the neutron star angular velocity ΩNS. Notice that in
the presence of particle acceleration magnetospheric ‘gaps’, this is not 100% exact (Ruderman
& Sutherland 1975, Contopoulos 2005). In particular, in old pulsars near their death line
ω � ΩNS. In pulsars, I(Ψ) is self-consistently determined through an iterative numerical
technique that implements a smooth crossing of the relativistic Alfvèn surface, the light
cylinder where r sin θ = c/ω (Contopoulos, Kazanas & Fendt 1999, Timokhin 2006). In the
case of a spinning black hole, the situation is qualitatively similar but more complicated.
Contrary to a neutron star, the black hole does not have a solid surface, and therefore it

• The pulsar light cylinder:    r sinθ = c/ω

• The electric current I(Ψ) must be determined self-
consistently
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We update the distributions of ω(Ψ) and I(Ψ) as follows: At each latitude θ, we check

where the singularity condition

1− ω2A sin
2 θ

Σ
+

4Mαωr sin2 θ

Σ
− 2Mr

Σ
= 0 (17)

is satisfied in r. At each such radial position, we extrapolate Ψ from r+ (larger r) and

r− (smaller r). In general, Ψ(r+, θ) differs from Ψ(r−, θ). At the inner ‘light surface’ we

implement

ωnew(Ψnew) = ωold(Ψnew)− [Ψ(r+, θ)−Ψ(r−, θ)] , with (18)

Ψnew ≡ 0.5Ψ(r+, θ) + 0.5Ψ(r−, θ) , (19)

whereas at the outer ‘light surface’ we implement

ωnew(Ψnew) = ωold(Ψnew)− [Ψ(r+, θ)−Ψ(r−, θ)] , (20)

Inew(Ψnew) = Iold(Ψnew) + [Ψ(r+, θ)−Ψ(r−, θ)] , with (21)

Ψnew ≡ 0.5Ψ(r+, θ) + 0.5Ψ(r−, θ) . (22)

In order to facilitate convergence, at the inner ‘light surface’ we update only ω every 10

relaxation iterations for Ψ, whereas at the outer ‘light surface’ we update both ω and I every

50 relaxation iterations for Ψ. Also, in order to avoid numerical instabilities, we smooth out

the distributions of ω(Ψ) and I(Ψ) every 50 relaxation iterations for Ψ. We found that

more frequent smoothing inhibits the convergence of our iteration scheme. Notice that this

procedure was obtained empirically and is not a general rule for anyone who may want to

reproduce our results. It is also interesting that we update ω and I only through the non-

smoothness of the solution, and not through the regularization conditions at the two singular

‘light surfaces’ as we did in Contopoulos, Kazanas & Fendt (1999). In fact, this is a very

general procedure that may be applied to any similar singular equation. One must be careful

with the sign of the correction terms which can only be determined empirically by trial and

error.

The results of our numerical integration are shown in figure 1. We show here the final

distributions for ω(Ψ) (left panel) and |I(Ψ)| (right panel) for five values of the black hole spin
parameter a. The solution is very close (within 10%) to the split monopole configuration that

we implemented as initial condition for our iterative relaxation numerical method (Eqs. 15 &

16). As is the case in pulsars, the magnetospheric electric current is non-zero at Ψ = Ψmax,

and the global electric circuit closes through an equatorial current sheet. Notice that we

have no way to update ω along the axis, and therefore we have chosen ω(Ψ = 0) = 0.5ΩBH.

We have also implemented ω�(Ψ = Ψmax) = I �(Ψ = Ψmax) = 0. The reader should check

Contopoulos, Kazanas & Papadopoulos 2013 

• The black hole possesses two light surfaces

• The electric current I(Ψ) must be determined self-
consistently together with the angular velocity of the 
magnetic field ω(Ψ)
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the simulation data points accurately, while the original BZ77
scaling (Equation (4)) underpredicts the power (e.g., by a factor
of ≈3 at a = 0.99).

Careful examination of Figure 3(a) and especially of the inset
Figure 3(ia), which shows a blowup of the a → 1 region of
the plot, reveals a flattening in the numerical data points at
spin values a ! 0.95: the BZ2 formula (7) overpredicts the
jet luminosity by about 25% as a → 1 (in agreement with
R. Krasnopolsky 2004, private communication). It is not clear
that this corner of parameter space is particularly relevant for
astrophysics, nor is the effect very large. Nevertheless, for
completeness we note that the flattening of the jet power can
be well-modeled by including higher-order corrections to the
BZ2 formula (7), e.g., by the BZ6 formula which we derive in
Appendix C. We give here a simplified version of this formula,

P BZ6(ΩH) ≈ kΦ2
tot

(
Ω2

H + αΩ4
H + βΩ6

H

)
, (9)

where the value of α is determined analytically, α ≈ 1.38
(same as in the BZ4 expansion, Equation (8)) and β is found
numerically by least-square fitting Equation (9) to the full BZ6
analytic formula derived in Appendix C: β ≈ −9.2. The gray
stripe in Figure 3 compares this formula to our numerical results
for the full range of models. Higher-order corrections have no
effect at small spin values (the gray and light red stripes lie on
top of each other) but do a good job of reproducing the flattening
in the jet luminosity at spin values a ! 0.95 and the slight but
systematic increase in the power output of the numerical jets
above the light red stripe at a " 0.9 (this increase is especially
apparent in Figure 3(b)). In anticipation of future discussion,
it is useful to express the power at low spin in terms of the
maximum achievable power at a = 1:

P (a) $ 0.32a2P (a = 1), a " 0.3. (10)

We now look into the origin of the differences in the
power outputs of the various model jets, as well as of the
numerical trends discussed above. We focus on two limiting
cases: monopolar jet (ν = 0) and paraboloidal jet (ν = 1,
r0 = 1).

First, let us recast the power output of the jet in a convenient
form. In a stationary axisymmetric force-free flow, several
quantities are conserved along poloidal field lines (defined by
Ψ = const). Two of these are the field line angular velocity
Ω(Ψ) and the enclosed poloidal current I (Ψ) (Tchekhovskoy
et al. 2008). The power output of a force-free jet may be written
as the integral of the outward Poynting flux Sr ≡ −ΩBrBϕ

over a spherical jet cross section.12 In this notation, the lower
component of the toroidal magnetic field is up to a numerical
factor the enclosed poloidal current, −2πBϕ ≡ I (Ψ). Using this
notation, which is very similar in appearance and meaning to
the usual special relativistic notation, we obtain the total power
output of the BH by integrating over the surface of the BH (see
also BZ77):

P =
∫∫

Sr dA = 2
∫ π/2

0
ΩBrI dA = 2

∫ 1

0
Ω(Ψ)I (Ψ) dΨ,

(11)

12 Here the GR notation is simplified and appears like the non-GR expressions
(apart from some sign conventions) by using the notational conventions in
Appendix B of McKinney (2005a) and in McKinney (2006a). In this notation,

Bi ≡ ∗
F

it
, Bi = ∗

F it , Ei = Fit /
√−g, Ei = F ti , and Ω ≡ −Eθ/B

r , where F
is the faraday tensor,

∗
F is the Maxwell tensor, and

√−g is the square root of
minus the determinant of the metric. Horizon surface area elements are given
by dA = √−gdθdφ.

Figure 4. Angular dependence of various quantities in a monopolar jet (ν = 0)
as a function of the poloidal flux function Ψ. The different curves in each
panel correspond to different values of the BH spin (see legend). From top
to bottom the panels show the normalized field angular velocity ω = Ω/ΩH,
the normalized enclosed poloidal current i = I/ΩH, and the normalized jet
luminosity p = ωi = ΩI/Ω2

H = P/Ω2
H. The analytic BZ77 solution, shown

with dotted lines, provides an excellent description of the numerical results for
all spin values a ! 0.99. Beyond this value of a, the quantities ω, i, and p all
become noticeably smaller than the analytic solution. This trend is removed by
the BZ6 solution (9), as shown in Figure 3.
(A color version of this figure is available in the online journal.)

where the field strength Br times the area element dA gives the
magnetic flux through that area, dΦ = 2πdΨ = Br dA, and
the numerical factor of 2 accounts for the two hemispheres of
the BH.

Figure 4 shows for a monopolar jet the angular profiles
of angular velocity ω = Ω/ΩH, enclosed poloidal current
i = I/ΩH, and power output p = P/Ω2

H. The particular
scalings by ΩH have been selected based on Equation (7) so as
to remove any obvious trends as a function of spin. This allows
us to compare models with different spins on the same scale.
At low spin, a " 0.1, we have excellent agreement between the
numerical models and the analytic solution obtained by BZ77,
shown by the dotted lines. For larger spins up to a " 0.9,
both the dimensionless angular field line velocity ω and the
enclosed current i increase with increasing a (Figures 4(a) and
(b)). According to Equation (11), this should result in an increase
in the normalized jet power p, as confirmed in Figure 4(c). This
is the reason for the small but systematic increase in jet power
above the estimate (7). For a ! 0.95, we find that ω, i, and p
all decrease relative to Equation (7), causing a flattening of the
jet power at these extreme spins. The reason for the decreased
power is related to a change in the poloidal field geometry of
the jet near the BH horizon (see Section 3.2 and Appendices B
and C): while at low spins the magnetic field is nearly uniform
across the jet for all of our models, at high spins the poloidal
field becomes non-uniform with a maximum field strength at
the jet axis and a minimum near the wall. Since it is the field
geometry near the BH that sets the power output (see footnote 11

Ψ/Ψmax

0
0 1
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Figure 1. Electromagnetic energy density flux for R = 0 (left), R = 1/2 (middle)
and R = 1 (right) at t = 320M .

until a quasi-stationary regime is reached, comparing the luminosity obtained for
each case far away from the black hole. This luminosity is computed as the integral
of the electromagnetic energy flux density (which can be seen for the three cases
studied in fig. 1) on a solid angle of 15 degrees along the z-axis (further details on this
computation are described in [7]) and shown in figure 2 (left plot), after a convenient
renormalization with the asymptotic value of the R = 1 case. After a transitory initial
behaviour, the obtained luminosities for the different values of the reflection coefficient
R are qualitatively the same in structure and the emitted power within similar ranges.
It is interesting to notice the energy density flux reaches a rather constant asymptotic
configuration in the R = 0 case, while relatively small amplitude cylindrical oscillations
are observed for 0 < R ≤ 1. Nevertheless, the jet structure and average luminosities
obtained are comparable in all cases. Thus, within typical astrophysical uncertainties
it is clear the BZ mechanism is not affected when considering significantly different
boundary conditions.

To ensure the boundary location does not affect the above observations, we have
studied the jet’s luminosity for two different boundary placements along the jet’s
direction; the original domain (small) with z = [−16, 16]M and another one (large)
with z = [−32, 32]M . Figure 2 (right plot) illustrates the obtained values for the
case with R = 1 normalized to the asymptotic value of the small domain simulation,
showing again that at late times the values obtained are quite similar.

4. Final Comments

This work illustrates the robustness of the BZ mechanism to generate a collimated
Poynting flux of energy which is largely independent of the boundary conditions
adopted. Consequently, while the load’s characteristics are essentially unknown, our
studies indicate the jet resulting from the plasma’s ability to extract energy from the
black hole’s vicinity is robust.

Palenzuela, Bona, 
Lehner, Reula 2011 

Alic, Moesta, Rezzolla, 
Jaramillo, Palenzuela, 

Zanotti 2013 
Contopoulos et al. 2013 

(in preparation) 
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Conclusions

• In analogy with pulsars...

• The light cylinder determines a unique solution

• Isolated black holes do not produce jets

• “Operational” black holes need very efficient 
pair formation above the horizon

• The background magnetic field may be generated in 
situ by the Cosmic Battery


