Rayleigh-Taylor and Richtmyer-Meshkov Instabilities in Relativistic Hydrodynamic Jets

Jin MATSUMOTO

National Astronomical Observatory of Japan

Collaborator: Youhei Masada (Kobe University)

Morphological Dichotomy of the Jet

FR II

- Morphology is one of the most fundamental property of the relativistic jet.
- A morphological dichotomy between FR I and FR II
 - A complex combination of several intrinsic and external factors
- Instabilities play an important role in the morphology and stability of the jet through the interaction between the jet and external medium.

Motivation of Our Study

To investigate the propagation dynamics and stability of the relativistic jet

- using 3D relativistic hydrodynamic simulations

focus on the transverse structure of the jet

Numerical Setting: 3D Toy Model 1

Basic Equations

Result: Density

finger-like structure emerges at the jet-external medium interface

radial oscillating motion of the jet

log p

0.5

-1.0

-2.5

-4.0

the interface deformation gradually grows.

Synergetic Growth of Rayleigh-Taylor and Richtmyer-Meshkov Instabilities

The transverse structure of the jet is dramatically deformed by a synergetic growth of the RTI and RMI once the jet-external medium interface is corrugated in the case with the pressure-mismatched jet.

Stability Condition of the Jet

complementary **2D** simulations of transverse structure of the jet **excluding** the destabilization effects by the **Kelvin-Helmholtz** mode

Numerical Setting: 3D Toy Model 2

Result: Density

the jet.

jet and surrounding medium leads to the jet disruption.

Deceleration of the jet due to mixing

Velocity v_z : t=2000

deceleration of the jet due to the mixing between the jet and surrounding medium

Summary

Propagation dynamics and stability of the relativistically hot is studied through 3D relativistic hydrodynamic simulations.

The jet-ambient medium interface is unstable when the effective inertia of the jet is larger than the surrounding medium.

Rayleigh-Taylor instability
Richtmyer-Meshkov instability

deceleration of the jet due to the mixing between the jet and surrounding medium

Next Study:

- more realistic situation for relativistic jets such as AGN jets and GRBs
- effect of the magnetic field on RT and RM instabilities