PROBING THE MAGNETIC FIELD OF 3C 279

by Sebastian Kiehlmann on behalf of the Quasar Movie Project team

Max Planck Institute for Radio Astronomy, Auf dem Hügel 69, 53121 Bonn, Germany

degree of linear polarization:

- mean (P)=12 %
- variation $\sigma(P)=8\%$

Fig. 1a: Optical, linear polarization degree of 3C 279

Max-Planck Institut für Radioastronomie, Bonn

object	EVPA rotation	time nterval	explanation		reference	
OJ 287	120 °	7 d]		Kikuchi et al.	, 1988
BL Lac	240 °	5 d	Helical m	otion in a	Marscher et	al., 2008
PKS 1510-089	720 °	50 d	helical mag	netic field	Marscher et	al., 2010
3C 279	ٹ 300 ګ	60 d			Larionov et a	ıl., 2008
3C 279	ک 208 °	12 d	Bent jet		Abdo et al., 2	2010
γ- ray flaring		3	500 400 [°] 1 ^{uus} X 200 100			
Fig. 1b: Optic degree and E	al, linear polarizat VPA of 3C 279 MANN, DIPLPHYS. STITUT FÜR RADIOASTRONOMIE, BON	tion N	0	00 5400 J	5600 5800 ID-2450000 [d]	6000

MAX-PLANCK INSTITUT FÜR RADIOASTRONOMIE, BONN

- Assumption: smooth variation
- Question:
 - Valid assumption?
 - Reliability?

III.a Smoothing methods

X↓*ref*, *i* = {[X↓*i*−1−*N*,X↓*i* −1]}

N=4

Method 2:

 $\Delta X \downarrow i = |X \downarrow i - X \downarrow i - 1| - \sqrt{\sigma}^{2}$ $(X \downarrow i) + \sigma^{2} (X \downarrow i - 1)$

if ΔX*↓i* >90°

if $|X \downarrow i - X \downarrow ref, i| > 90^{\circ}$ $X \downarrow mod, i = X \downarrow i \pm n \cdot 180^{\circ}$

III.c Test 2: assumption of smoothness

Random walk model:

e.g. F. D'Arcangelo et al., ApJ 2007

Total cells $N=54 \propto (P)^2 - 2$

magnetic field lines

Fig. 4a: Sketched cells of the random walk process

III.c Test 2: assumption of smoothness

Random walk model:

e.g. F. D'Arcangelo et al., ApJ 2007

Total cells $N=54 \propto \langle P \rangle \hat{1}-2$ Vary Cells $N \downarrow var = 35 \propto \sigma(P)/\langle P \rangle$ Mean time step: 3 d

magnetic field lines

Fig. 4b: Sketched cells of the random walk process

III.c Test 2: assumption of smoothness

Random walk model:

e.g. F. D'Arcangelo et al., ApJ 2007

Total cells $N=54 \propto \langle P \rangle \uparrow -2$ Vary Cells $N \downarrow var = 35 \propto \sigma(P)/\langle P \rangle$ Mean time step: 3 d

Fig. 5a: Random EVPA variation

III.c Test 2: assumption of smoothness

1,000,000 simulations

EVPA amplitude <i>A↓X</i> :	Method 1:	Method 2:
$A\downarrow X > 180^{\circ}$:	> 99.5 %	> 98.5 %
<i>A</i> ↓X >360°:	43 %	43 %

Fig. 5b: Random EVPA variation, smoothed

III.c Test 2: assumption of smoothness

P [%]

° ×

 $\chi_{\rm sm1}$ [°]

X_{sm2} [°]

1,000,000 simulations

EVPA amplitude <i>A↓χ</i> :	Method 1:	Method 2:
<i>A</i> ↓X >180°:	> 99.5 %	> 98.5 %
<i>A</i> ↓X >360°:	43 %	43 %
$\chi \downarrow sm1 = \chi \downarrow sm2$:		1 %

$$(\Delta X / \Delta t) \downarrow i = X \downarrow i - X \downarrow i - 1 / t \downarrow i - t \downarrow i - 1$$

Fig. 5b: Random EVPA variation, smoothed

III.c Test 2: assumption of smoothness

1,000,000 simulations

EVPA amplitude <i>A↓ჯ</i> :	Method 1:	Method 2:
<i>A↓</i> X >180°:	> 99.5 %	> 98.5 %
<i>A↓</i> X >360°:	43 %	43 %
$\chi \downarrow sm1 = \chi \downarrow sm2$:		1 %

$$(\Delta X/\Delta t) \downarrow i = X \downarrow i - X \downarrow i - 1 / t \downarrow i - t \downarrow i - 1$$

Fig. 5c: Random EVPA variation, smoothed, p-t-p variation

III.c Test 2: assumption of smoothness

1,000,000 simulations

EVPA amplitude <i>A↓χ</i> :	Method 1:	Method 2:
<i>A↓</i> X >180°:	> 99.5 %	> 98.5 %
<i>A↓</i> X >360°:	43 %	43 %
$\chi \downarrow sm1 = \chi \downarrow sm2$:		1 %

$$s = \langle (\Delta X / \Delta t) \downarrow i - m \rangle \text{ with } m = \langle (\Delta X / \Delta t) \downarrow i \rangle$$

Fig. 5c: Random EVPA variation, smoothed, p-t-p variation

III.c Test 2: assumption of smoothness

1,000,000 simulations

EVPA amplitude <i>A↓X</i> :	Method 1:	Method 2:
<i>A</i> ↓X >180°:	> 99.5 %	> 98.5 %
<i>A</i> ↓X >360°:	43 %	43 %
Variation estimator <i>s</i> :		
<i>s</i> <6°/ <i>d</i> :	0 %	0 %
<i>s</i> <10 °/ <i>d</i> :	0.1 %	0.3 %
<i>s</i> <20 °/ <i>d</i> :	76 %	98 %
<i>(s)</i> =	18 °/d	15 °/d
$\chi\downarrow sm1 = \chi\downarrow sm2$:		1 %
Fig. 5c: Random EVP smoothed, p-t-p vari	A variatior iation	Ι,

35 30 25 polarization 8 4 150 × 50 600 smoothed EVPA $\chi_{\rm sm1}$ [°] 400 200 -200-400 X_{sm2} [°] 400 200 smoothed EVPA 2 -200 $\Delta \chi_{sm2} / \Delta t ~[^{\circ}/d] ~ \Delta \chi_{sm1} / \Delta t ~[^{\circ}/d]$ 150 100 50 -50-100variation 1 -150150 100 50 -50 -100variation -150200 400 600 800 1000 1200 1400 0 t [d]

IV.a EVPA smoothness

30 F .

Epoch	EVPA	<i>s</i> [°/d]	χ↓sm1 = χ↓sm2	
I	\checkmark	32(5)	no	100 - → → → → → → → → → → → → → → → → → →
				500 - Smoothed EVPA 1 - 300 - 200 - 100 -
				608 500 400 300 200 100 0
				[p 150 150 150 150 100
Fig. 6a: 3	3C 279 opti	cal polarizat	ion	variation 2
Sebasti Max-Pi	an Kiehlmann, Dipl lanck Institut für R	Phys. Adioastronomie. Bonn		5200 5400 5600 5800 6000 JD-2450000 [d]

IV.a EVPA smoothness

30 F .

				25 - 1 20 - 15 - 1 - 1	
Epoch	EVPA	<i>s</i> [°/d]	χ↓sm1 = χ↓sm2		
I .	\checkmark	32(5)	no	○ 100 - × 50	
II	1			0 - Sr 500 - Sr 0 400 - Sr 300	moothed EVPA 1
				608 500 - Sr 400 - 300 - 100 -	moothed EVPA 2
				0 150 50 −50 −100 −100 −100	varia
Fig. 6b: 🤅	3C 279 opt	ical polarizat	ion	Δ	varia
SEBASTI MAX-P	ian Kiehlmann, Dipi lanck Institut für I	Phys. Radioastronomif. Boni	N AN	5200	5400 5600 5800 JD-2450000 [d]

och	EVPA	<i>s</i> [°/d]	$\chi \downarrow sm1 = \chi \downarrow sm2$
I	\checkmark	32(5)	no
II	\uparrow		
III	$\langle \downarrow$		-764-0
Fig. 6c: 3	3C 279 opti	cal polarizatio	n
SEBAST	ian Kiehlmann, Dipl	Рнуs.	A

Epoch	EVPA	<i>s</i> [°/d]	χ↓sm1 = χ↓sm2	
I	\checkmark	32(5)	no	100 - → → → → → → → → → → → → → → → → → →
II	\uparrow			500 - smoothed EVPA 1
III	\checkmark			- 400 - 300 - 200 -
IV	\uparrow			608 500 - smoothed EVPA 2
				[₀] 400 - 300 - X 200 -
				50 0 -50 -50
			P_{A}	× −100
Fig. 6d:	3C 279 opt	ical polarizati	on	
SEBAST	ian Kiehlmann, Dipl	Рнуѕ.		5200 5400 5600 5 JD-2450000 [d

				25 - I 20 - 20 -	
Epoch	EVPA	<i>s</i> [°/d]	$\chi \downarrow sm1 = \chi \downarrow sm2$	P- 10 - 1 5 - 10 - 1 0 - 10 - 10 - 10 - 10 - 10 - 1	
I	\checkmark	32(5)	no	○ 100 - × 50 - 1	
П	\uparrow			0 -* + 500 -	smoothed EVPA 1
III	$\langle \mathbf{v} \rangle$			。] 300 - 200 - 100 -	
IV	$\mathbf{T}_{\mathbf{x}}$			608	smoothed EVPA 2
V	\uparrow			200 - 200 -	
				0 150 0 100 − 50 − 0 − 100 100	
Fig. 6e:	3C 279 opti	ical polarizatio	n	Z [b/] 150	
SEBAST	ian Kiehlmann, Dipl	Phys.		5200	5400 5600 58 JD-2450000 [d]

IV.a EVPA smoothness

poch	EVPA	<i>s</i> [°/d]	$\chi \downarrow sm1 = \chi \downarrow sm2$
I	\checkmark	32(5)	no
П	\uparrow		
Ш	\checkmark		
IV	\uparrow	2-6	yes
V	\uparrow		
VI	\uparrow		
	∇U_{0}	h Vớ	
Fig. 6f. 2	C 270 opti		K-0
rig. 01 : 5	C 279 Opti		
SEBASTI/ MAX-PI	an Kiehlmann, Dipl anck Institut für F	Phys.	

15

Epoch	EVPA	<i>s</i> [°/d]	χ↓sm1 = χ↓sm2
I	\checkmark	32(5)	no
II	\uparrow		
III	\downarrow		
IV	\uparrow	2-6	yes
V	\uparrow		
VI	\uparrow		
VII		10.5(8)	yes
			-40
Fig. 6g: 3	3C 279 opti	ical polarizat	ion
SEBAST MAX-P	TAN KIEHLMANN, DIPL	Phys.	

IV.c Gamma-ray-flaring

Event time: $\Delta t \approx 110 \ d$

Assuming Lorentz factor: $\Gamma = 15$

Traveling distance: $\Delta r \sim 5 \cdot 10 \uparrow 5 r \downarrow S$

Fig. 9: 3C 279 γ-ray light curve, optical light curves and polarization

iv.d mm polarization

v. Conclusions

Method:

• Distinguish stochastic from deterministic EVPA variation.

3C 279 :

- Possibly stochastic EVPA variation during low-state
- Deterministic EVPA variation during flaring state
 - EVPA rotation >360°
- \rightarrow no globally bending jet
- → helical motion in a helical magnetic field

- Two-directional

Special thanks to the QMP collaborators:

T. Savolainen (PI), S.G. Jorstad, F. Schinzel, K.V. Sokolovsky,
I. Agudo, M. Aller, L. Berdnikov, V. Chavushyan, L. Fuhrmann,
M. Gurwell, R. Itoh, J. Heidt, Y.Y. Kovalev, T. Krajci, O. Kurtanidze,
A. Lähteenmäki, V.M. Larionov, J. León-Tavares, A.P. Marscher, K.
Nilson, the AAVSO, the Yale SMARTS project and all the observers.

Acknowledgements:

SK was supported for this research through a stipend from the International Max Planck Research School (IMPRS) for Astronomy and Astrophysics at the Max Planck Institute for Radio Astronomy in cooperation with the Universities of Bonn and Cologne.

Data from the Steward Observatory spectropolarimetric monitoring project were used. This program is supported by Fermi Guest Investigator grants NNX08AW56G, NNX09AU10G, and NNX12AO93G.

We acknowledge with thanks the variable star observations from the AAVSO International Database contributed by observers worldwide and used in this research.

