

Hadronic Modeling of AGN Variability

Matthias Weidinger¹ Felix Spanier² ¹Theoretische Physik IV: Weltraum- und Astrophysik ²ITPA, Universität Würzburg

Granada 2013-06-13

Theoretische Physik IV: Weltraum- und Astrophysik

The Emission of Blazars

Markarian 501 multifrequency campaign 2009¹:

- typical double hump structure
- from radio to gamma-rays
- peak frequencies and flux levels vary

Hadronic Modeling of AGN Variability Matthias Weidinger, Granada 2013-06-13

Theoretische Physik IV: Weltraum- und Astrophysik

The Emission of Blazars

- from radio to gamma-rays
- peak frequencies and flux levels vary

short-time variability

¹from Abdo et al. 2011, ²from Albert et al. 2007

Hadronic Modeling of AGN Variability Matthias Weidinger, Granada 2013-06-13

Theoretische Physik IV: Weltraum- und Astrophysik

RUB

The Emission of Blazars

peak frequencies and flux levels vary

short-time variability

¹from Abdo et al. 2011, ²from Albert et al. 2007

Hadronic Modeling of AGN Variability Matthias Weidinger, Granada 2013-06-13

Mechanism Underlying the Second Peak

 optical to hard X-Ray peak: doppler enhanced synchrotron radiation

Mechanism Underlying the Second Peak

- optical to hard X-Ray peak: doppler enhanced synchrotron radiation
- Low luminosity blazars (mostly BL Lacs): well described by the Synchrotron Self-Compton mechanism

Mechanism Underlying the Second Peak

- optical to hard X-Ray peak: doppler enhanced synchrotron radiation
- Low luminosity blazars (mostly BL Lacs): well described by the Synchrotron Self-Compton mechanism
- High luminosity blazars (e.g. FSRQs): simple SSC fails, require:
 - compton upscattering of external photons
 - hadronic synchrotron radiation and subsequent cascades

Mechanism Underlying the Second Peak

- optical to hard X-Ray peak: doppler enhanced synchrotron radiation
- Low luminosity blazars (mostly BL Lacs): well described by the Synchrotron Self-Compton mechanism
- High luminosity blazars (e.g. FSRQs): simple SSC fails, require:
 - compton upscattering of external photons
 - hadronic synchrotron radiation and subsequent cascades
- strongly dependent on the emitting site within the jet (within the broad line region or beyond)

Demands on the Model

Unbiased hybrid emission model

- allow for non-thermal leptons and hadrons if $r_l(B)$ confined to be relevant emitters in the jet
- determine dominating species during the modeling

Introduce as few parameters as possible

 linking observational evidence to microphysics (additional parameter checks for sensibility)

Demands on the Model

Unbiased hybrid emission model

- allow for non-thermal leptons and hadrons if $r_l(B)$ confined to be relevant emitters in the jet
- determine dominating species during the modeling

Introduce as few parameters as possible

 linking observational evidence to microphysics (additional parameter checks for sensibility)

Selfconsistency

- particle spectra should arise from acceleration and cooling
- radiative output highly dependent on input p⁺ spectral shape (cf A. Mastichiadis)

Timedependency

• exploit the full information we get from blazar-emission

Hadronic Modeling of AGN Variability Matthias Weidinger, Granada 2013-06-13

The Model I

Assume spherical emitting region, containing isotropic particle distributions and random B, moving towards the observer at Γ :

The Model I

RUB

Assume spherical emitting and acceleration region, containing isotropic particle distributions and and random B, moving towards the observer at Γ :

Kinetic equation: acceleration zone

$$\partial_t n_i = \partial_\gamma \left[(\beta_{s,i} \gamma^2 - t_{\mathsf{acc},i}^{-1} \gamma) \cdot n_i \right] + \partial_\gamma \left[[(a+2)t_{\mathsf{acc},i}]^{-1} \gamma^2 \partial_\gamma n_i \right] + Q_{0,i} - t_{\mathsf{esc},i}^{-1} n_i$$

see M. Weidinger et al. 2010 for details

The Model I

RUB

Assume spherical emitting and acceleration region, containing isotropic particle distributions and and random B, moving towards the observer at Γ :

Kinetic equation: acceleration zone

$$\partial_t n_i = \partial_\gamma \left[(\beta_{s,i} \gamma^2 - t_{\mathsf{acc},i}^{-1} \gamma) \cdot n_i \right] + \partial_\gamma \left[[(\mathbf{a} + 2) t_{\mathsf{acc},i}]^{-1} \gamma^2 \partial_\gamma n_i \right] + Q_{0,i} - t_{\mathsf{esc},i}^{-1} n_i$$

see M. Weidinger et al. 2010 for details

The Model I

Assume spherical emitting and acceleration region, containing isotropic particle distribution

The Model I

Eventually all particles may escape the highly turbulent region to enter the radiation zone.

Kinetic equation: acceleration zone

$$\partial_t n_i = \partial_\gamma \left[(\beta_{s,i} \gamma^2 - t_{\mathsf{acc},i}^{-1} \gamma) \cdot n_i \right] + \partial_\gamma \left[[(a+2)t_{\mathsf{acc},i}]^{-1} \gamma^2 \partial_\gamma n_i \right] + Q_{0,i} - t_{\mathsf{esc},i}^{-1} n_i$$

see M. Weidinger et al. 2010 for details

Radiation Mechanisms

Unlike e⁻, p⁺ are not elementary particles \Rightarrow many interaction branches besides synchrotron (and IC) from primary e⁻ and p⁺.

e

Unlike e⁻, p⁺ are not elementary particles \Rightarrow many interaction branches besides synchrotron (and IC) from primary e⁻ and p⁺. photo meson production

.π**0**

1000 500

0.1

1

10

€r [GeV]

100

 $p\gamma$ CS [Hümmer et al., ApJ 721 (2010)]

1000

Proton synchrotron

IC:V

 10^{4}

Unlike e⁻, p⁺ are not elementary particles \Rightarrow many interaction branches besides synchrotron (and IC) from primary e⁻ and p⁺.

photo meson production Bethe-Heitler pair prod.

Proton synchrotron

Unlike $e^-,\,p^+$ are not elementary particles \Rightarrow many interaction branches besides synchrotron (and IC) from primary e^- and $p^+.$

photo meson production Bethe-Heitler pair prod.

Unlike e⁻, p⁺ are not elementary particles \Rightarrow many interaction branches besides synchrotron (and IC) from primary e⁻ and p⁺.

photo meson production Bethe-Heitler pair prod.

Unlike e⁻, p⁺ are not elementary particles \Rightarrow many interaction branches besides synchrotron (and IC) from primary e⁻ and p⁺. photo meson production

Unlike e⁻, p⁺ are not elementary particles \Rightarrow many interaction branches besides synchrotron (and IC) from primary e⁻ and p⁺. photo meson production

Hadronic Modeling of AGN Variability Matthias Weidinger, Granada 2013-06-13

The Model II

RUB

We end up with 4 non-linear coupled equations in the radiation zone:

Kinetic equations: radiation zone

$$\begin{aligned} \partial_t N_{p^+} &= \partial_\gamma \left[\left(\beta_p \gamma^2 + \boldsymbol{P}_{\boldsymbol{p}\gamma} \right) \cdot N_{p^+} \right] + b^3 t_{\text{esc},p}^{-1} n_{p^+} - t_{\text{esc},p,N}^{-1} N_{p^+} \\ \partial_t N_{e^-} &= \partial_\gamma \left[\left(\beta_e \gamma^2 + \dot{\gamma}_{\text{IC}} \right) \cdot N_{e^-} \right] + b^3 t_{\text{esc},e}^{-1} n_{e^-} + Q_{\text{pp}} + \frac{Q_{\text{p}\gamma^-}}{Q_{\text{p}\gamma^+}} - t_{\text{esc},e,N}^{-1} N_{e^-} \\ \partial_t N_{e^+} &= \partial_\gamma \left[\left(\beta_e \gamma^2 + \dot{\gamma}_{\text{IC}} \right) \cdot N_{e^+} \right] + Q_{\text{pp}} + \frac{Q_{\text{p}\gamma^+}}{Q_{\text{p}\gamma^+}} - t_{\text{esc},e,N}^{-1} N_{e^+} \end{aligned}$$

Photon distribution

$$\partial_t N_{\rm ph} = R_{\rm syn} + R_{\rm IC} + R_{\pi^0} - c \left(\alpha_{\rm SSA} + \alpha_{\rm pp} \right) N_{\rm ph} - t_{\rm esc,ph}^{-1} N_{\rm ph}$$

• Kelner Aharonian parameterization of the SOPHIA Monte Carlo results is used to calculate $Q_{p\gamma^-}$, $Q_{p\gamma^+}$, R_{π^0}

The Model II

RUB

We end up with 4 non-linear coupled equations in the radiation zone:

Kinetic equations: radiation zone

$$\partial_t N_{p^+} = \partial_\gamma \left[\left(\beta_p \gamma^2 + P_{p\gamma} \right) \cdot N_{p^+} \right] + b^3 t_{\text{esc},p}^{-1} n_{p^+} - t_{\text{esc},p,N}^{-1} N_{p^+}$$
$$\partial_t N_{e^-} = \partial_\gamma \left[\left(\beta_e \gamma^2 + \dot{\gamma}_{\text{IC}} \right) \cdot N_{e^-} \right] + b^3 t_{\text{esc},e}^{-1} n_{e^-} + Q_{pp} + Q_{p\gamma^-} - t_{\text{esc},e,N}^{-1} N_{e^-}$$
$$\partial_t N_{e^+} = \partial_\gamma \left[\left(\beta_e \gamma^2 + \dot{\gamma}_{\text{IC}} \right) \cdot N_{e^+} \right] + Q_{pp} + Q_{p\gamma^+} - t_{\text{esc},e,N}^{-1} N_{e^+}$$

Photon distribution

$$\partial_t N_{\rm ph} = R_{
m syn} + R_{
m IC} + R_{\pi^0} - c \left(lpha_{
m SSA} + lpha_{
m pp}
ight) N_{
m ph} - t_{
m esc,ph}^{-1} N_{
m ph}$$

- Kelner Aharonian parameterization of the SOPHIA Monte Carlo results is used to calculate $Q_{p\gamma^-}$, $Q_{p\gamma^+}$, R_{π^0}
- Cascades will emerge in the optically thick regime $> 10^{28}$ Hz

The Model II

RUB

We end up with 4 non-linear coupled equations in the radiation zone:

Kinetic equations: radiation zone

$$\partial_t N_{p^+} = \partial_\gamma \left[\left(\beta_p \gamma^2 + P_{p\gamma} \right) \cdot N_{p^+} \right] + b^3 t_{\text{esc},p}^{-1} n_{p^+} - t_{\text{esc},p,N}^{-1} N_{p^+}$$
$$\partial_t N_{e^-} = \partial_\gamma \left[\left(\beta_e \gamma^2 + \dot{\gamma}_{\text{IC}} \right) \cdot N_{e^-} \right] + b^3 t_{\text{esc},e}^{-1} n_{e^-} + Q_{pp} + Q_{p\gamma^-} - t_{\text{esc},e,N}^{-1} N_{e^-}$$
$$\partial_t N_{e^+} = \partial_\gamma \left[\left(\beta_e \gamma^2 + \dot{\gamma}_{\text{IC}} \right) \cdot N_{e^+} \right] + Q_{pp} + Q_{p\gamma^+} - t_{\text{esc},e,N}^{-1} N_{e^+}$$

Photon distribution

$$\partial_t N_{\mathsf{ph}} = R_{\mathsf{syn}} + R_{\mathsf{IC}} + R_{\pi^0} - c \left(lpha_{\mathsf{SSA}} + lpha_{\mathsf{pp}}
ight) N_{\mathsf{ph}} - t_{\mathsf{esc},\mathsf{ph}}^{-1} N_{\mathsf{ph}}$$

- Kelner Aharonian parameterization of the SOPHIA Monte Carlo results is used to calculate $Q_{p\gamma^-}$, $Q_{p\gamma^+}$, R_{π^0}
- Cascades will emerge in the optically thick regime $> 10^{28}$ Hz
- P_{pγ} neglectable in most cases; adiabatic losses @ low γ_p (cf M. Böttcher)

Hadronic Modeling of AGN Variability Matthias Weidinger, Granada 2013-06-13

The Model II

Hadronic Modeling of AGN Variability Matthias Weidinger, Granada 2013-06-13

Principle SED

Principle SED

- RUB
- *e*[±]-synchrotron $\pi^{\pm} \rightarrow \mu^{\pm} + \nu_{\mu}/\bar{\nu}_{\mu} \rightarrow$ 1e-10 not observable (optically thick blob + EBL) leptonic IC and/or hadronic $e^{\pm} + \nu_e/\bar{\nu}_e + \bar{\nu}_\mu/\nu_\mu$ 1e-11 $F_{V}(erg\ cm^{-2}\ s^{-1})$ 1e-12 1e-13 1e-14 1e+12 1e+15 1e+18 1e+21 1e+24 1e+27 1e+30 1e+33 1e+36 v (Hz)

Principle SED

- *e*[±]-synchrotron
 - $\begin{array}{l} \pi^{\pm} \rightarrow \mu^{\pm} + \nu_{\mu}/\bar{\nu}_{\mu} \rightarrow \\ e^{\pm} + \nu_{e}/\bar{\nu}_{e} + \bar{\nu}_{\mu}/\nu_{\mu} \end{array}$
- $\pi^0 \rightarrow \gamma + \gamma$ contribution

1e-10

1e-11

1e-13

1e-14

vF_v (erg cm⁻² s⁻¹)

Principle SED

- *e*[±]-synchrotron
 - $\begin{array}{l} \pi^{\pm} \rightarrow \mu^{\pm} + \nu_{\mu}/\bar{\nu}_{\mu} \rightarrow \\ e^{\pm} + \nu_{e}/\bar{\nu}_{e} + \bar{\nu}_{\mu}/\nu_{\mu} \end{array}$
- $\pi^{\rm 0} \rightarrow \gamma + \gamma$ contribution
- Pair cascades with low ν photons $\gamma + \gamma \rightarrow e^+ + e^ (e^{\pm}$ -Synchrotronstr.)

Principle SED

- e^{\pm} -synchrotron
 - $\begin{array}{l} \pi^{\pm} \rightarrow \mu^{\pm} + \nu_{\mu}/\bar{\nu}_{\mu} \rightarrow \\ e^{\pm} + \nu_{e}/\bar{\nu}_{e} + \bar{\nu}_{\mu}/\nu_{\mu} \end{array}$
- $\pi^{\rm 0} \rightarrow \gamma + \gamma$ contribution
- Pair cascades with low ν photons $\gamma + \gamma \rightarrow e^+ + e^ (e^{\pm}$ -Synchrotronstr.)
- Proton synchrotron emission must be relevant

Principle SED

- *e*[±]-synchrotron
 - $\begin{array}{l} \pi^{\pm} \rightarrow \mu^{\pm} + \nu_{\mu}/\bar{\nu}_{\mu} \rightarrow \\ e^{\pm} + \nu_{e}/\bar{\nu}_{e} + \bar{\nu}_{\mu}/\nu_{\mu} \end{array}$
- $\pi^{\rm 0} \rightarrow \gamma + \gamma$ contribution
- Pair cascades with low ν photons $\gamma + \gamma \rightarrow e^+ + e^ (e^{\pm}$ -Synchrotronstr.)
- Proton synchrotron emission must be relevant

Requires ρ^+ with $\gamma > \Delta^+/E_{\rm photons} \approx 10^7-10^9$ to be present in the jet.

1 ES 1011

Intermediate frequency peaked BL Lac object @ z = 0.212

Hadronic Modeling of AGN Variability Matthias Weidinger, Granada 2013-06-13

1 ES 1011

Intermediate frequency peaked BL Lac object @ z = 0.212

Hadronic Modeling of AGN Variability Matthias Weidinger, Granada 2013-06-13

1 ES 1011

1 ES 1011

Intermediate frequency peaked BL Lac object @ z=0.212

$Q_0(\mathrm{cm}^{-3})$	<i>B</i> (G)	$R_{blob}(cm)$	$t_{\rm a}/t_{\rm e}$	δ	γ_0	$Q_p(\mathrm{cm}^{-3})$	γ_{0p}
$1.55\cdot 10^8$	8.0	$1.8\cdot10^{15}$	1.3	36	3400	$3.8 \cdot 10^{7}$	600

Hadronic Modeling of AGN Variability Matthias Weidinger, Granada 2013-06-13

Theoretische Physik IV: Weltraum- und Astrophysik

Outburst of 1 ES 1011

Injection of more primary e^- and p^+ for $\Delta t \approx 4$ h.

3C 279

RUB

3C 279

Flat Spectrum Raido Quasar @ z = 0.536

$Q_0({ m cm}^{-3})$	<i>B</i> (G)	$R_{blob}(cm)$	$t_{\rm a}/t_{\rm e}$	δ	γ_0	$Q_p(\mathrm{cm}^{-3})$	γ_{0p}
$2.0 \cdot 10^{10}$	34	$3.0\cdot10^{16}$	0.5	20	125	$4\cdot 10^6$	$2 \cdot 10^6$

Hadronic Modeling of AGN Variability Matthias Weidinger, Granada 2013-06-13

Theoretische Physik IV: Weltraum- und Astrophysik

3C 279

3C 454.3

RUB

3C 454.3

Flat Spectrum Radio Quasar @ z = 0.859

$Q_0(cm^{-3})$	<i>B</i> (G)	$R_{\rm blob}({ m cm})$	$t_{\rm a}/t_{\rm e}$	δ	γ_0	$Q_p(\mathrm{cm}^{-3})$	γ_{0p}
$3.8 \cdot 10^7$	10.2	$5 \cdot 10^{15}$	1.1	43	580	$4.2 \cdot 10^{8}$	300

Hadronic Modeling of AGN Variability Matthias Weidinger, Granada 2013-06-13

Theoretische Physik IV: Weltraum- und Astrophysik

RUB

3C 454.3

Hadronic Modeling of AGN Variability Matthias Weidinger, Granada 2013-06-13

3C 454.3

Flat Spectrum Radio Quasar @ z = 0.859

Blazar Sequence

- Systematic blazar modeling reveals both, leptonic and hadronic dominated jets.
- *B* as important parameter.

Blazar Sequence

- Systematic blazar modeling reveals both, leptonic and hadronic dominated jets.
- *B* as important parameter.
- Blazar Sequence (Fossati et al. 1998):
 - high luminosity, low ν_{syn}
 - Iow luminosity, high ν_{syn}
- \Rightarrow synchrotron losses and emissivity
- Dichotomy in AGN
 - Radio: FR I and FR II
 - MHD: poynting and kinetic dominated jets
- ⇒ different dominating particle species (revealed by their radiative signature?)

Blazar Sequence

- Systematic blazar modeling reveals both, leptonic and hadronic dominated jets.
- *B* as important parameter.
- Blazar Sequence (Fossati et al. 1998):
 - high luminosity, low ν_{syn}
 - Iow luminosity, high ν_{syn}
- \Rightarrow synchrotron losses and emissivity
- Dichotomy in AGN
 - Radio: FR I and FR II
 - MHD: poynting and kinetic dominated jets
- \Rightarrow different dominating particle species (revealed by their radiative signature?)

Blazar Sequence

Hadronic Modeling of AGN Variability Matthias Weidinger, Granada 2013-06-13

- Fully selfconsistent hybrid emission model for blazars
- including the non-linear feedback.
- Injected p^+/e^- energy density (and $\gamma_{0p}/\gamma_{0e})$ as free parameters

- Fully selfconsistent hybrid emission model for blazars
- including the non-linear feedback.
- Injected p⁺/e⁻ energy density (and $\gamma_{0p}/\gamma_{0e})$ as free parameters
- Short-term variability as most important distinguishing feature.
- Time-dependent SEDs inevetible when comparing different ν-collecting times of instruments in MWL campaigns.
- Systematic modeling brings new insight to the long-term variation in blazar spectra.

RUE

- Fully selfconsistent hybrid emission model for blazars
- including the non-linear feedback.
- Injected p⁺/e⁻ energy density (and $\gamma_{0p}/\gamma_{0e})$ as free parameters
- Short-term variability as most important distinguishing feature.
- Time-dependent SEDs inevetible when comparing different ν-collecting times of instruments in MWL campaigns.
- Systematic modeling brings new insight to the long-term variation in blazar spectra.
- Some blazars as possible production sites of UHECRs
- of course highly dependent on acceleration mechanism.
- Systematic modeling might reveal physical reason for blazar sequence.

RU

- Fully selfconsistent hybrid emission model for blazars
- including the non-linear feedback.
- Injected p^+/e^- energy density (and $\gamma_{0p}/\gamma_{0e})$ as free parameters
- Short-term variability as most important distinguishing feature.
- Time-dependent SEDs inevetible when comparing different ν-collecting times of instruments in MWL campaigns.
- Systematic modeling brings new insight to the long-term variation in blazar spectra.
- Some blazars as possible production sites of UHECRs
- of course highly dependent on acceleration mechanism.
- Systematic modeling might reveal physical reason for blazar sequence.

Consistent treatment of different blazars allows for multi-messenger interpretation of diffuse phenomena (e.g. neutrinos, CRs, envelope) Hadronic Modeling of AGN Variability Matthias Weidinger, Granada 2013-06-13

Alhambra, June 10

Thank You for the Attention

Overview

Compute jet power $L_{inj} = \frac{4}{3}\pi R_{acc}^3 m_i c^2 \frac{\delta}{2} \int d\gamma \gamma Q_{0,i}(\gamma)$ over *B*:

- rising trend L(B), even across different regimes of the model
- Proton confinemend via r_{gyr} naturally leads to a dichotomy
- non-thermal protons only can exist in high B-Field jets

Overview

Compute jet power $L_{inj} = \frac{4}{3}\pi R_{acc}^3 m_i c^2 \frac{\delta}{2} \int d\gamma \gamma Q_{0,i}(\gamma)$ over B:

Other AGN manifestations also show that dichotomy: FR-I/FR-II radio galaxies

[Details see: M.Weidinger et al. 2010, M. Weidinger & F. Spanier 2010(I)(II), M. Weidinger & F.Spanier 2011, F. Spanier & M. Weidinger 2012, MAGIC Collaboration & M. Weidinger 2012]

Overview

Other AGN manifestations also show that dichotomy: FR-I/FR-II radio galaxies

[Details see: M.Weidinger et al. 2010, M. Weidinger & F. Spanier 2010(I)(II), M. Weidinger & F.Spanier 2011, F. Spanier & M. Weidinger 2012, MAGIC Collaboration & M. Weidinger 2012]

Theoretische Physik IV: Weltraum- und Astrophysik

Overview

Compute jet power $L_{ini} = \frac{4}{2}\pi R_{acc}^3 m_i c^2 \frac{\delta}{2} \int d\gamma \gamma Q_{0i}(\gamma)$ over *B*:

Blazar-Sequence and evolution II

Assume a "standard" blazar @ z = 0.2 in 2% equipartition (E_B/E_{kin}) (partially) self-generated B as only relevant parameter:

- reduce $Q_p(\gamma_{0,p})$ maintaining 2% equiparition $\Rightarrow B$ scales with Q_p
- until $r_{\rm gyr} \approx R_{\rm rad}$ and protons are no longer confined
- equipartition for e^- becomes relevant at low B fields (at ≈ 0.25 G)

 \Rightarrow Blazar-Sequence encodes hadronicness of a blazar-jet; a dichotomy arises Reason for high-mass loading (e.g. spin, acretion, shocks) see DM, AT, ...?

