magnetic field in the jet of quasar 3C454.3

Mohammad Zamaninasab Max-Planck-Institut für Radioastronomie, Bonn

T. Savolainen, E. Clausen-Brown, T. Hovatta, M.L. Lister, T.P. Krichbaum, Y.Y. Kovalev, A.B. Pushkarev

Granada 14 June 2013

Jet launching and role of magnetic field

Blandford & Znajek (1977)

Meier & Uchida 2002 Uchida et al. 2004

McKinney et al. 2009

to what extent?

courtesy of Alan Marscher/BU Blazar group

to what extent?

courtesy of Alan Marscher/BU Blazar group

Monday, July 1, 13

19 May 2005

Marscher 2009

to what extent?

courtesy of Alan Marscher/BU Blazar group

Large-scale ordered magnetic field far from the central engine may not be limited to the 3C454.3.

> Out of 91 sources in the MOJAVE sample, only 9 show transverse sizes larger than at least two times the synthesized beam in polarized flux, which is needed for detecting asymmetries.

4 out of those actually demonstrate significant transverse gradient in RM.

Hovatta et al. 2012

 $* \approx 400 \text{ rad m}^{-2}$ transverse gradient + sign reversal.

* clear detection of a change in the sign of the observed Faraday rotation across the jet can easily be explained by the presence of a helical field, but not by electron-density gradients.

* an ordered helical magnetic field component at a distance of $\approx 500 - 800 \ pc \ (10^7 r_g)$ from the launching point!!

* already hinted from 3D simulations up to $10^3 r_g$

McKinney & Blandford 2009

$$\tau_{\rm ff} = 9.8 \times 10^{-3} l \ n_{\rm th}^2 \ T^{-1.5} \nu^{-2} [17.7 + \ln \left(T^{1.5} \nu^{-1} \right)]$$

$$\tau_{\rm ff} \ge 0.7 \qquad \longrightarrow \qquad n \simeq 5 \times 10^3 \ cm^{-3}$$

$$RM \sim 10^2 \ rad \ m^{-2} \longrightarrow \qquad B \sim 10^{-9} \ G$$

 $m(\lambda) = m_0 \exp(-k\lambda^4)$ Burn de-polarization (Burn 1966)

Homan 2012, ApJL inverse-depolarization

Summary

* Multi-frequency polarimetric radio imaging of the outflow shows significant transverse asymmetries in intensity, spectral index, linear polarization and Faraday rotation measure, as is expected in the presence of a large-scale helical magnetic field.

* 3C 454.3 shows the first compelling evidence that the radio emission from the jet of a quasar exhibits signatures of a large-scale, ordered helical magnetic field component at a distance of hundreds of parsecs from the launching point.

* Our results provide observational support for magnetic jet launching models and demonstrate the stability of the ordered field component over a large distance down the jet.

22 September 2009

Monday, July 1, 13

