Multi-wavelength emission models in blazars

Gabriele Ghisellini **INAF-Osservatorio di Brera**

with

- G. Tagliaferri, F. Tavecchio,
- M. Volonteri

- A. Celotti, R. Della Ceca,
- L. Foschini, G. Ghirlanda,
- F. Haardt, L. Maraschi,
- G. Pareschi, T. Sbarrato,

BL Lacs vs FSRQs: the blazar sequence

Jet-accretion connection & location

Black hole masses (for FSRQs)

The jet cannot have less power than what required to produce the observed luminosity:

$$P_{jet} > \frac{L_{obs}}{G^2}$$

If P_{jet} is twice as much, G halves. We can take that as the minimum P_{jet} . This limit is model-independent.

Pairs and radio-galaxies

Two epochs of heavy BH formation? Recently, two complete surveys of blazars: BAT and LAT (Ajello+2009, 2012).

BAT has fewer blazars, but more at high redshifts.

All BAT blazars at z>2 have M_{BH} >10⁹ M_0 . These all have L_x > 10⁴⁷ erg/s and L_{disk} > 0.1 L_{Edd}

Jets \rightarrow spin \rightarrow high accretion efficiencies \rightarrow slow growth

Conclusions

Jets for all M/M_{Fdd} Location is an issue Look if radio-galaxies peak at ~1 MeV with $L\sim 10^{45}$ erg/s Heavy BH in jetted AGNs form earlier Jets & Spin? Something must be changed