The Gamma-ray Activity of the high-z Quasar 0836+710

Svetlana Jorstad Boston Univ. USA, St.Petersburg Univ. Russia

Co-Authors

Boston University group: Alan Marscher, Manasvita Joshi, Karen Willamson, Nick MacDonald St.Petersburg University group: Valeri Larionov, Vladimir Hagen-Thorn Daria Morozova, Ivan Troitsky Instituto de Astrof'ısica de Andaluc'ıa group: José-Luis Gómez, Iván Agudo Carolina Casadio, Sol Molina

Mark Gurwell, CfA

Metsähovi Radio Obs. Group: Anne Lähteenmäki, Merja Tornikoski

Max-Plank-Institut für Radioastronomie group: Lars Fuhrman, Thomas Krichbaum, Jeff Hodgson, E. Angelakis, J.A. Zensus

Cahill Center for Astronomy & Astrophysics: Talvikki Hovatta in behalf of the OVRO collaboration

Telescopes

RXTE

St.Petersburg, Russia

Crimea, Ukraine

SUZAKU

Calar Alto

Effelsberg, Germany 26 junio 2013

Canary Island, Spain

Mauna Kea, Hawaii

Metsähovi Obs., Finland

Almería, Spain

OVRO, CA USA

Jets Meeting, Granada

Outline

¹ November, 2011

4C +71.07

S5 0716+71

Multi-Frequency behavior of

I.

Jets Meeting, Granada

The Gamma-Ray Outburst

X-Ray Variability

Optical Properties I

Kaspi et. al 2007: $S_{CIV} = (2.36 \pm 0.57) \times 10^{-14} \text{ ergs/cm}^2/\text{s}$ $FWHM_{CIV} \sim 9700 \text{ km/s}$ Time Lag: 595 (+85,-110)days 188 (+27,-37)days $M_{BH} \sim 2.6 \times 10^9 M_{sun}$ $\lambda L_{\lambda} (1350 \text{\AA}) = (1.12 \pm 0.16) \times 10^{47} \text{ ergs/s}$ $L_{disk} \sim 3.6 \times 10^{47} \text{ ergs/s}$ $L_{bol}/L_{Edd} \sim 0.9$ From CIV FWHM and UV luminosity Vestergaard & Peterson (2006) $M_{BH} \sim 1.8 \times 10^{10} M_{sun}$

Cross-correlation function between the continuum and the emission lines CIV and CIII]

Optical Properties II

Method of separation thermal and synchrotron components: Hagen-Thorn et al. #25

2 cm

26 junio 2013

Jets Meeting, Granada

Parsec Scale Jet Kinematics

K11:

$$\mu = 0.234 \pm 0.014 \text{mas/yr}$$

 $T_o = 2011.\ 27 \pm 0.02$
 $\beta_{app} = 19.7 \pm 1.2c$
 $\Gamma \sim 19.8 \ (\Gamma_{slow} \sim 12)$
 $\delta \sim 21.3$
 $\Theta_o \sim 2.7^o$
 $\tau_{var} \sim 0.7yr$
 $a \sim 0.08 \text{mas}$

26 junio 2013

Jets Meeting, Granada

43GHz-15GHz Core Shift

Pushkarev et al. 2012: a distance from the BH to the 15 GHz Core \sim 42.5pc a shift between the 15 and 43 GHz Cores \sim 0.16mas

Spectral Energy Distribution

 $r = 2\Gamma^{4} (\delta/\Gamma)^{2} [1/3 (L_{SSC}/L_{SYN})(\xi L_{disk}/L_{\gamma})]^{1/2} [c\tau_{var,obs}/(1+z)] = 15.8 pc$

Conclusions

- 1. The quasar 0836+71 had an active γ -ray state from March 2011 to March 2012, with the highest flux on November 1, 2011 when the γ -ray luminosity reached $(1.09 \pm 0.16) \times 10^{49}$ ergs/s
- 2. The start of the γ -ray activity coincides with the appearance of the superluminal knot in the parsec scale jet with Γ ~20. The peak of the γ -ray emission occurred within the brightest state of the knot, and the γ -ray outburst stopped as the knot decelerated to Γ ~12.
- 3. Optical polarization behavior reveals a connection with properties of the mm-wave core region when the knot was within 0.3 mas of the core.
- 4. The γ -ray variations correlate with optical variations without a measurable delay.
- 5. We connect the active γ -ray state with the superluminal knot propagating down the jet from the mm-wave core located ~14 pc from the central engine.

Morozova et al. #33

Troitsky et al. #34

SAVE the VLBA!!!!

