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Problem

Relativistic jets launched with high magnetization

parameter: σ ≫ 1.

Collimation slow ⇒ σ may stay large

Magnetic fields are too springy — shocks do not change

the Poynting flux substantially.

Fermi I acceleration doesn’t work well in magnetized σ ∼ 1

shocks
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Dissipation is possible if magnetic field (not Lorentz factor) in jet

fluctuates (e.g., twists, reversals of polarity at launch).
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1 Wait long enough JK & Mochol ApJ 729,104 (2011)
2 Hit an obstacle:

In MHD description: formation of current sheets ⇒

compression of these at a weak shock ⇒ enhanced
reconnection rate

Solar wind: Drake et al, ApJ 709, 963 (2010)
Pulsars: Sironi & Spitkovsky, ApJ 741, 39 (2011)

For under-dense plasmas: shock causes fluctuations to

convert into electromagnetic modes forming a dissipative
precursor

Amano & Kirk ApJ 770, 18 (2013),

Mochol & Kirk arXiv:1303.6434
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Why worry about under-dense plasmas?

For an MHD description, require λ ≫ λg, c/ωp
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Why worry about under-dense plasmas?

For an MHD description, require λ ≫ λg, c/ωp

In the Crab pulsar wind r ≪ 10−3
× termination shock

radius

In a synchrotron emitting e± jet

λ ≫ λg = 3 × 1015ν
1/2
16 B

−3/2
nT cm

Otherwise:

Nonlinear superluminal modes (Arka, Mochol)

Electromagnetically modified shocks (Amano)
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Two-fluid simulations

Simplest description that includes electromagnetic modes is

one with two charged fluids

Relativistic, finite temperature electron & positron fluids

1D in space, 3D in momentum and EM fields

Initial conditions:

Left half: circularly polarized, cold, static shear, γ = 40,

σ = 10, λ ≈ λg/4
Right half: shocked (R-H conditions) unmagnetized plasma



Time evolution
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Wave helicity
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Positive helicity injected wave (E+, B+).

Backwards propagating, negative helicity waves generated.

E > B in precursor and downstream (vwave = B/E ).



Simulation Results

Poynting flux dissipated completely

A precursor containing strong electromagnetic waves is

formed

A hydrodynamic shock remains



Implications/Conclusions

Particle acceleration:

In a magnetized jet, the power in fluctuations with short

length scale (λ < λg) can be dissipated at an

electromagnetically modified shock front

Particle acceleration by the first order Fermi is possible at

the hydrodynamic sub-shock
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Radiation:

A signature from the electromagnetic precursor is possible

from both thermal particles and accelerated particles

Electric vector polarization angle perpendicular to the jet

— mechanism similar to synchro-Compton (Rees 1971):

Possibly measurable degree of circular polarization from

accelerated particles penetrating the precursor


