JETS ACROSS THE BLACK HOLE MASS SCALE: NEW INSIGHTS FROM X-RAY BINARIES

Sera Markoff (API, University of Amsterdam) [Main collaborators: S.Corbel, J.Dexter, S.Dibi, S.Drappeau, H.Falcke, R.Fender, P.C.Fragile, C.Froning, E.Gallo, S.Heinz, R.Hynes, E.Körding, D.Meier, M.Middleton, S.Migliari, J.Miller-Jones, M.Nowak, A.Pe'er, R.Plotkin, P.Polko, D.Russell, G.Sivakoff (+JACPOT), J.Wilms, F.Yuan]

Can we compare black holes of differing mass/power?

Supermassive BH Active Galactic Nucleus (AGN) (Jets optional) X-ray Binary: Black hole/Neutron star

Donor star

Accretion disk

let

Мвн ~ 10⁶⁻¹⁰ Мо 10⁴⁻⁵ yrs!

М_{ВН} ~ 10 М_⊙ 1 day

Time variable XRB behavior: The hardnessintensity diagram (HID): A schematic view

Time variable XRB behavior: The HID GX339-4 data with states indicated

Time variable XRB behavior: The HID Complex cycle in disk/jet dominance

Mapping XRB states \Leftrightarrow AGN classes?

Mass/power scalings (XRB ⇔ AGN) The "Fundamental Plane" of BH accretion

(SM ea. 2003; Heinz & Sunyaev 2003; Merloni, Heinz & diMatteo 2003; Falcke, Körding, SM 2004; SM 2005; Körding et al. 2006; Plotkin, SM, Kelly, Körding & Anderson 2012)

Mass/power scalings (XRB ⇔ AGN) The "Fundamental Plane" of BH accretion

(SM ea. 2003; Heinz & Sunyaev 2003; Merloni, Heinz & diMatteo 2003; Falcke, Körding, SM 2004; SM 2005; Körding et al. 2006; Plotkin, SM, Kelly, Körding & Anderson 2012)

Mass/power scalings (XRB ⇔ AGN) The "Fundamental Plane" of BH accretion

(SM ea. 2003; Heinz & Sunyaev 2003; Merloni, Heinz & diMatteo 2003; Falcke, Körding, SM 2004; SM 2005; Körding et al. 2006; Plotkin, SM, Kelly, Körding & Anderson 2012)

Mass/power scaling models (synchrotron example)

 $(\mathbf{R}_{\mathbf{d}},\mathbf{R}_{\mathbf{0}})=(\boldsymbol{\zeta}_{\mathbf{d}},\boldsymbol{\zeta}_{\mathbf{0}})\mathbf{r}_{\mathbf{g}}$

p; N(γ)~Cγ^{-p}

← Qj=ηMc²=ηmMc² U_B/U_e=k

 You can also do similar analysis for direct feeding from various known accretion flow
 This assumption is

equivalent also to RIAF launching

- * $C \propto B^2$ (fixed partition of energy), in disk launching P, $\rho \propto \dot{m}/M$, $B^2 \sim P$, ρ , or $B^2 \propto Q_j/(R^2c) \propto \dot{m}/M$
- **★** Synchrotron self absorption:

 $\tau = R_j \alpha_\nu \quad R_j \propto M$

 $\alpha_{\nu} \propto CB^{(p+1)/2} \nu^{-(p-1)/2}$ $j_{\nu} \propto CB^{(p+1)/2} \nu^{-(p-1)/2}$

 $S_{\nu} \propto \xi(\theta) j_{\nu} (1 - e^{-\tau_{\nu}}) / \alpha_{\nu}$

- * Consider (self-absorbed) flux from contributing τ =1 surfaces at some v: $F_{\nu} = \int_{r}^{\infty} dr R_r S_{\nu}(r) = F_{\nu}(M, \dot{m}, a, \nu, \theta)$
- ★ Derive expected scalings i.e.,

 $\nu_{SSA} \propto \left(M \phi_c \phi_B^{(p+2)/2} \right)^{2/(p+4)}$

 $\frac{\partial \ln F_{\nu}}{\partial \ln \dot{m}} \equiv \xi_{\dot{m}} = \frac{2p + (p+6)\alpha_{RIR} + 13}{2(p+4)} \sim \frac{17}{12} + \frac{2}{3}\alpha_{RIR} \qquad \sim \dot{m}^{2/3}M^{-1} = \dot{M}^{2/3}M^{-1}$

(Falcke & Biermann 1995; SM et al. 2003; Merloni, Heinz & diMatteo 2003; Falcke, Körding, SM 2004; Heinz & Sunyaev 2003)

(Blandford & Königl 1979, Falcke & Biermann 1995, SM et al. 2003, Heinz & Sunyaev 2003)

Constraining accretion physics with radio/X-ray correlations

For objects with the *same* mass:

 $L_{\rm R} \propto L_{\rm X}^m \quad m = \frac{\frac{17}{12} - \frac{2}{3}\alpha_{\rm R}}{q} \approx \frac{1.4}{q}$

Synchrotron: q=2, ADAF/RIAF: q=2-2.3, Radiatively efficient disk/corona: q=1 is problematic

> (Falcke & Biermann 1995; SM et al. 2003; Heinz & Sunyaev 2003; Merloni, Heinz & diMatteo 2003; Falcke, Körding & SM 2004; Heinz 2004; Körding et al. 2006; Plotkin, SM et al. 2012)

Conclusions from the "Fundamental Plane" body of work

- Strong evidence for shared physics across BH mass scale for "steady, compact jet" states (XRBs: hard state; AGN: LLAGN, FRI, BL Lacs)
- Location of jet break seems to be a key pivot point, either linking radio/Xray via synchrotron or otherwise setting scales

But, like all good stories, there are always complications....

New: RL/RQ/multi-efficiency states seen in single XRBs!

New: RL/RQ/multi-efficiency states seen in single XRBs!

New: RL/RQ/multi-efficiency states seen in single XRBs!

Constraining accretion physics with radio/X-ray correlations

For objects with the *same* mass:

 $L_{\rm R} \propto L_{\rm X}^m \qquad m = \frac{\frac{17}{12} - \frac{2}{3}\alpha_{\rm R}}{q} \approx \frac{1.4}{q}$

Synchrotron with cooling break: q=1 or radiatively efficient X-ray production $(L_X \propto \dot{M})$ or jets not the same as in "classic" hard state

> (Falcke & Biermann 1995; SM et al. 2003; Heinz & Sunyaev 2003; Merloni, Heinz & diMatteo 2003; Falcke, Körding & SM 2004; Heinz 2004; Körding et al. 2006; Plotkin, SM et al. 2012)

Evidence for a new, high-efficiency "FP"? Seyferts, M- σ sources only:

Beyond correlations: modeling spectra and jet breaks

Sgr A^{*} — best understanding of plasma conditions within 10R_g for any black hole!

Application to multiple black hole XRBs: simultaneous MW data

Application to multiple black hole XRBs: simultaneous MW data

Application to multiple black hole XRBs: simultaneous MW data

SM ea. 01, SM

ea. 03, SM,

Nowak & Wilms

05

Simultaneous radio-X-ray spectra w strong constraints on acceleration

Simultaneous radio-X-ray spectra 🗰 strong constraints on acceleration

⁽Corbel & Fender 2002, SM ea. 2003, Gandhi ea. 2011)

M81*: XRB model applied to supermassive BH

Contribution from host galaxy creates degeneracy in modeling

Synchrotron dominated model is quantitatively a scaled up (in mass) XRB hard state, z_{acc}~150-300rg

(SM, Nowak, Young et al. 2008)

Mass-scaling physical models: M81 \Leftrightarrow V404 Cyg (L_x~10⁻⁷ - 10⁻⁶ L_{Edd})

(SM, Nowak, et al., in prep.)

Mass-scaling physical models: M81 \Leftrightarrow V404 Cyg (L_x~10⁻⁷ - 10⁻⁶ L_{Edd})

(SM, Nowak, et al., in prep.)

(Blandford & Königl 1979, Falcke & Biermann 1995, SM et al. 2003, Heinz & Sunyaev 2003)

We didn't see this scaling in the original GX339-4 correlations

 $z_{acc} \propto Q_j^{-0.135} \sim \dot{M}^{-0.135}$

(SM et al. 2003)

Simultaneous MW spectra with jet break evolution

⁽Russell et al. 2013ab)

Some newer work and some questions

(Vlahakis et al. 2000, Vlahakis & Königl 2003, Polko, Meier & SM 2010, 2013a,b)

(Vlahakis et al. 2000, Vlahakis & Königl 2003, Polko, Meier & SM 2010, 2013a,b)

(Vlahakis et al. 2000, Vlahakis & Königl 2003, Polko, Meier & SM 2010, 2013a,b)

Questions raised for me by this meeting so far...

- ★ Jet breaks fall within a relatively narrow range for black holes of all masses IIIII stable feature?
- ★ Don't follow ~m^{2/3} scaling for v_{SSA}
 ➡ within our model, because
 associated with a new component
 (particle accel)
- I had associated this with MFP/ recollimation shock (see Polko ea.)
- But M87 scales of jet base/launch zone similar, and HST-1 much further out (RCS)??
- ★ Question: what accelerates the particles before the recollimation shock, and do we expect the resulting spectra to be different before and after???

Questions raised for me by this meeting so far...

* "ultraweak" black hole Sgr A* show evidence for very weak, sporadic particle acceleration during flares (puts it on FP)

★ Same scenario matches quiescent XRB A0620-00: below ~10⁻⁷ L_{Edd}, the power-law fades away:

→ acceleration zone further down jets?

 \rightarrow less efficient acceleration/ lower cutoff?

★ Question: do we expect a jet power threshold below which structures for particle acceleration won't form or will be less efficient?

Questions raised for me by this meeting so far...

Sar A* <u>1</u>-0 ٣ م Ò A0620-00 Ò 0-110-19 ò 0 Q -----LO 0 S 10-5 10-6 10-7 10^{-4} 10-3 0.01 0.1 Energy (keV)

NEW! Poster by Tariq Shahbaz, Dave Russell et al.: Swift J1357.2-0933 in quiescence has slope too steep to be from particle acceleration (even cooled)! Maybe relevant for Juan Fernandez Ontiveros' steep LLAGN as well??

lower cutoff

★ Question: do we expect a jet power threshold below which structures for particle acceleration won't form or will be less efficient?

keV⁻¹

(ergs cm⁻² s⁻¹

keV⁻¹)

 s_{-1}

(ergs cm⁻²

X

×

Summary & Outlook: XRBs are very relevant for AGN!

- ★ XRBs display a range of disk/jet configurations, so do AGN (though not in realtime): sub-Eddington accretion state with compact jets scales with M_{BH} (hard state ⇔ LLAGN/FRI/BL Lac) [+ disk-dominated state...]
- ★ Beyond correlations in accretion output (Fundamental Plane): most recent work suggests full physical models can be scaled in M, m over 7 O/(mag)!
- * Jet breaks are a key feature: Lack of strong scaling with M or m hints at stable/self-similar feature MFP/recollimation shock? If so, why so close compared to M87/BL Lac? If not, what other MHD feature could produce the break? XRBs critical for developing/testing these ideas!
- Increasing signs that below ~10⁻⁷ L_{Edd}, jets experience less efficient (or no) particle acceleration: Does this fit into the emerging views presented here?
- *** Outlook:**
- Improved models: One size does not fit all! New SA-models with MHDconsistent "backbones" in reduce degeneracies, provide link to simulations
- **New simulations: GRMHD + rad. transfer, including particle acceleration?**
- New facilities: Era of "transient factories": LOFAR/MeerKAT/ASKAP/LSST will discover more XRBs and TDEs to test models of realtime jet evolution