TIME-DEPENDENT LEPTOHADRONIC MODELS OF AGN: APPLICATION TO Mrk 421

Apostolos Mastichiadis

National and Kapodistrian University of Athens

- Leptonic models: ~20 yrs old and still going strong (SED, variability)
- Hadronic models: More complicated less understood
 - Can they fit SEDs?
 - Time variability?
 - Bonus: UHECR and v production
- Judgement Day: MW campaigns, crosscorrelations

Has it started already? See Poster #41

TALK OUTLINE

- Leptohadronic Models: key ideas and processes
- Application to Mrk 421
 - SED and variability signatures
 - Neutrino and neutron emission

In collaboration with Stavros Dimitrakoudis Maria Petropoulou

SED OF BLAZARS -LEPTOHADRONIC MODELS

cf. M. Boettcher & M. Weidinger talks

PHYSICAL PROCESSES

Courtesy of R.J. Protheroe

Protons:

TEST #1: SECONDARY ELECTRONS AND PHOTONS

TEST #2: PROTON INJECTION AND STABLE SECONDARIES

S. Dimitrakoudis et al. (2012)

Mkr 421 2001 MULTIWAVELENGTH CAMPAIGN

Fossati et al. ,2008, ApJ, **677,** 906

Fossati et al. ,2008, ApJ, **677,** 906

X-rays and γ-rays highly correlated...

...with TeVs increasing more than linearly wrt the X-rays

Fossati et al. ,2008, ApJ, 677, 906

Fossati et al. ,2008, ApJ, **677,** 906

SED OF Mrk 421- LEPTOHADRONIC MODELS

INDUCING TIME-VARIABILITY

Assume small amplitude random-walk variations in particle injection Protons and electron injection can have

- (i) correlated variability without time lag
- (ii) correlated variability with time lag
- (iii) totally uncorrelated variability

Injection and lightcurves when p and e totally correlated

VARIATIONS OF MAXIMUM ENERGY

POWER SPECTRAL DENSITY

Time domain

Frequency domain

Break – higher frequencies (smaller timescales) suppressed

NEUTRINO EMISSION

Due to differences in the fiting parameters: LH π : PeV neutrinos with high flux \rightarrow ICE CUBE LHs: EeV neutrinos with low flux

S. Dimitrakoudis et al submitted

UHECR FROM NEUTRON ESCAPE

Small UHECR contribution from nearby BL Lacs if similar to Mrk 421:

- Lower luminosities
- Larger distances

S. Dimitrakoudis et al. submitted

LHs model: proton peak (after neutron escape, decay and proton propagation to Earth) ~30 EeV

CONCLUSIONS

We have developed a one-zone time-dependent, self-consistent leptohadronic code with state-of-the-art treatment of photopair and photopion interactions (proton losses and secondary injection)

Its application to the contemporaneous SED of Mrk 421 yields two very different fits → further MW observations and temporal correlations are needed.

LH-π model produces neutrino flux very close to the recent Ice-Cube observations.

	LH-π	LH-s
Dominant energy density	Protons	B-field
Max proton energy	~PeV	~EeV
TeV/X-ray variations	~quadratic	~linear
Neutrino peak and flux (erg/cm^2/sec)	PeV, 1.e-10	EeV, 1.e-12
Contribution to UHECR flux	None	EeV