The Innermost Regions of Jets and their Magnetic Fields

12 June 2013

An Exceptional Radio Flare in Markarian 421

Joseph L. Richards, Talvikki Hovatta, Matthew L. Lister, Anthony C. S. Readhead, Walter Max-Moerbeck, Tuomas Savolainen, Marcello Giroletti, Emmanouil Angelakis, Lars Fuhrmann, Ioannis Myserlis, Vassilis Karamanavis, Hugh D. Aller, and Margo F. Aller

Acknowledgements

This work and the MOJAVE program were supported by NASA Fermi GI grant 11-Fermi11-0019.

The OVRO 40 m monitoring program is supported in part by NSF grants AST- 0808050 and AST-1109911 and NASA grants NNX08AW31G and NNX11A043G.

UMRAO was supported in part by NSF grant AST-0607523, and NASA Fermi GI grants NNX09AU16G, NNX10AP16G, and NNX11AO13G.

The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

Title page image credit: NASA/Goddard Space Flight Center Conceptual Image Lab

In September, 2012, Mrk 421 flared in radio like never before

UMRAO

OVRO + VLBA

Background on Mrk 421

□ z=0.031 (133 Mpc)

* Except for recent tentative detection by Niinuma et al. (2012, ApJ, 759, 84)

Abdo et al. 2010, ApJ, 716, 30

The radio flare was a wideband phenomenon

The radio flare followed a period of intense gamma-ray emission

Fermi-LAT public light curve

> OVRO 15 GHz

Radio flare requires only a modest Doppler factor

The radio / gamma-ray crosscorrelation peaks are significant

Max-Moerbeck et al. and the *Fermi*-LAT collaboration, in prep.

VLBA Target of opportunity follow-up campaign

- Five epochs in October/November 2012
- U, K, and Q bands
 - W band in first epoch
- Full polarization

We aimed to pinpoint the radio flare location and detect any short-lived superluminal components

No major downstream changes associated with the flare

No major downstream changes associated with the flare

All components are stationary or subluminal

Parsec-scale structure is similar between radio bands

Summary and conclusions

An exceptional radio flare occurred in Mrk 421 about two months after a sustained GeV flare.

- Similar duration in radio / GeV
- Cross-correlation analysis supports a physical connection
 GeV emission ~0.25 pc upstream of radio, ~2 pc from C.E.
- Flux increase contained in unresolved sub-parsec core
 No superluminal component ejections
- Radio Doppler factor still in conflict with TeV Doppler factor (~4 vs ~15)

The Innermost Regions of Jets and their Magnetic Fields

Radio spectral evolution

