High-energy signatures of binary supermassive black holes

Gabriela S. Vila, Daniela Pérez & Gustavo E. Romero

gvila@iar.unlp.edu.ar

http://fcaglp.fcaglp.unlp.edu.ar/~gvila/

Grupo de Astrofísica Relativista y Radioastronomía (GARRA)

Instituto Argentino de Radioastronomía (IAR)

The innermost region of relativistic jets and their magnetic fields Granada, June 14th 2013

Binary supermassive BHs

- Late stage (before merger of the BHs) of the merger of two galaxies.
- A few (< 20) have been already identified. Many more candidates.
- Closest known binary separation ~ 7 pc (Rodriguez et al. 2006); several sub-pc separation candidates (e.g. Tsalmantza et al. 2011, Eracleous et al. 2012).
- Interest: merger of two SMBHs is a source of gravitational waves.

Binary supermassive BHs

Circumbinary accretion disks

Results from planetary migration

Type I migration

Movie by Hanno Rein, snapshot P. Armitage

Circumbinary accretion disks

Results from planetary migration

Type II migration

Movie by Hanno Rein, snapshot P. Armitage

- Disk-dominated
- Secondary-dominated

Circumbinary accretion disks

$$\Delta r \sim r_H = r_{\rm s} \left(\frac{q}{3}\right)^{1/3} \qquad q \equiv \frac{m_{\rm s}}{M}$$

Circumbinary SMBH accretion disks

Kocsis, Haiman & Loeb (2012)

Circumbinary SMBH accretion disks

Circumbinary SMBH accretion disks

•
$$C_i = C_i(M, q, \dot{M}, \alpha, ...)$$

•
$$r_i = r_i(M, q, \dot{M}, \alpha, ...)$$

Kocsis, Haiman & Loeb (2012)

Disk temperature profiles

Disk emission spectrum

See also, e.g., Gültekin & Miller (2012)

Any signature in the jet's SED?

We have studied the **inverse Compton** interaction of **photons** from the disk with a population of **non-thermal electrons in the jet** (external inverse Compton, EC).

• The disk photon field is **anisotropic** as seen from the jet frame.

Disk emission spectrum

Conditions for «overflowing regime»

Model	M_{\bullet}	q	$r_{ m s}$	\dot{M}	$\dot{M}_{ m Edd}$	$r_{ m H}$	$r_{ m in}$	$r_{ m out}$	$r_{ m ni}$	$r_{ m neu}$
M1	10^{7}	$5.50 \ 10^{-3}$	18000	0.1510^{24}	$0.15 \ 10^{25}$	2203.03	15796.97	20203.03	11735.10	56309.40
M2	510^{7}	$3.00 \ 10^{-3}$	3400	0.7210^{24}	$0.72 \ 10^{25}$	340	3060	3740	2355.30	9266.04
M3	10^{8}	$2.38 10^{-3}$	1500	0.1510^{25}	$0.15 \ 10^{26}$	138.86	1361.14	1638.86	1056.43	3944.98
M4	510^{8}	$1.28 \ 10^{-3}$	280	0.7210^{25}	0.7210^{26}	21.08	258.92	301.08	208.35	643.95

the ((gap)) or ((ring)) becomes narrower as M increases

Adapted from Romero & Vila (2008)

Vila et al. (2012)

Jet power

$$L_{\text{accr}} = \dot{M}c^2 = q_{\text{accr}}L_{\text{Edd}}$$
$$L_{\text{jet}} = L_{\text{B}} + L_{\text{m}} + L_{\text{k}} = q_{\text{jet}}L_{\text{accr}} \quad q_{\text{jet}} < 1$$

Non-thermal particles

$$L_{\rm rel} = q_{\rm rel} L_{\rm jet} \qquad q_{\rm rel} \ll 1$$

 $L_{\rm rel} = L_p + L_e$

Injection function
$$[\text{cm}^{-3} \text{ erg}^{-1} \text{ s}^{-1}]$$

 $Q(E) \propto Q_0 E^{-\alpha} \quad 1.4 \leq \alpha \leq 2.4$
 $E_{\min} \leq E \leq E_{\max}$

Adapted from Romero & Vila (2008)

Vila et al. (2012)

Jet power

$$L_{\text{accr}} = \dot{M}c^2 = q_{\text{accr}}L_{\text{Edd}}$$
$$L_{\text{jet}} = L_{\text{B}} + L_{\text{m}} + L_{\text{k}} = q_{\text{jet}}L_{\text{accr}} \quad q_{\text{jet}} < 1$$

Non-thermal particles

$$L_{\rm rel} = q_{\rm rel} L_{\rm jet} \qquad q_{\rm rel} \ll 1$$

 $L_{\rm rel} = L_p + L_e$

Injection function
$$[\text{cm}^{-3} \text{ erg}^{-1} \text{ s}^{-1}]$$

 $Q(E) \propto Q_0 E^{-\alpha} \quad 1.4 \leq \alpha \leq 2.4$
 $E_{\min} \leq E \leq E_{\max}$

Adapted from Romero & Vila (2008)

Vila et al. (2012)

Jet power

$$L_{\text{accr}} = \dot{M}c^2 = q_{\text{accr}}L_{\text{Edd}}$$
$$L_{\text{jet}} = L_{\text{B}} + L_{\text{m}} + L_{\text{k}} = q_{\text{jet}}L_{\text{accr}} \quad q_{\text{jet}} < 1$$

Non-thermal particles

$$L_{\rm rel} = q_{\rm rel} L_{\rm jet} \qquad q_{\rm rel} \ll 1$$

 $L_{\rm rel} = L_p + L_e$

Injection function
$$[\text{cm}^{-3} \text{ erg}^{-1} \text{ s}^{-1}]$$

 $Q(E) \propto Q_0 E^{-\alpha} \quad 1.4 \leq \alpha \leq 2.4$
 $E_{\min} \leq E \leq E_{\max}$

Adapted from Romero & Vila (2008)

Vila et al. (2012)

Steady-state particle distribution [cm⁻³ erg⁻¹]

$$v_{\text{jet}} \frac{\partial N}{\partial z} + \frac{\partial}{\partial E} \left(\frac{dE}{dt} N \right) = Q$$

- Energy losses
 - Adiabatic losses
 - Relativistic Bremsstrahlung
 - Synchrotron radiation
 - Inverse Compton
 - Disk photons (EIC)
 - Synchrotron photons (SSC)

(instead of) Conclusions

 No clear signatures revealing the presence of the secondary in the EC spectrum of the jet of the primary SMBH.

2. Intermediate-mass primary $(10^3 - 10^4 M_{Sun}) \implies$ wider «gap» expected